1,428
Views
11
CrossRef citations to date
0
Altmetric
Review

Laminins and retinal vascular development

&
Pages 82-89 | Received 04 Jul 2012, Accepted 08 Oct 2012, Published online: 15 Nov 2012

References

  • Simon-Assmann P, Orend G, Mammadova-Bach E, Spenlé C, Lefebvre O. Role of laminins in physiological and pathological angiogenesis. Int J Dev Biol 2011; 55:455 - 65; http://dx.doi.org/10.1387/ijdb.103223ps; PMID: 21858771
  • Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 2011; 3; http://dx.doi.org/10.1101/cshperspect.a004911; PMID: 21421915
  • Saint-Geniez M, D’Amore PA. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 2004; 48:1045 - 58; http://dx.doi.org/10.1387/ijdb.041895ms; PMID: 15558494
  • Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, et al. The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 2010; 51:2813 - 26; http://dx.doi.org/10.1167/iovs.10-5176; PMID: 20484600
  • Ito M, Yoshioka M. Regression of the hyaloid vessels and pupillary membrane of the mouse. Anat Embryol (Berl) 1999; 200:403 - 11; http://dx.doi.org/10.1007/s004290050289; PMID: 10460477
  • Lang R, Lustig M, Francois F, Sellinger M, Plesken H. Apoptosis during macrophage-dependent ocular tissue remodelling. Development 1994; 120:3395 - 403; PMID: 7821211
  • Meeson A, Palmer M, Calfon M, Lang R. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development 1996; 122:3929 - 38; PMID: 9012513
  • Dorrell MI, Aguilar E, Friedlander M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 2002; 43:3500 - 10; PMID: 12407162
  • Fruttiger M. Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 2002; 43:522 - 7; PMID: 11818400
  • Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011; 10:417 - 27; http://dx.doi.org/10.1038/nrd3455; PMID: 21629292
  • Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473:298 - 307; http://dx.doi.org/10.1038/nature10144; PMID: 21593862
  • Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 1995; 15:4738 - 47; PMID: 7623107
  • Weidemann A, Krohne TU, Aguilar E, Kurihara T, Takeda N, Dorrell MI, et al. Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. Glia 2010; 58:1177 - 85; PMID: 20544853
  • McLeod DS, Lutty GA, Wajer SD, Flower RW. Visualization of a developing vasculature. Microvasc Res 1987; 33:257 - 69; http://dx.doi.org/10.1016/0026-2862(87)90021-5; PMID: 2438539
  • Chan-Ling T, McLeod DS, Hughes S, Baxter L, Chu Y, Hasegawa T, et al. Astrocyte-endothelial cell relationships during human retinal vascular development. Invest Ophthalmol Vis Sci 2004; 45:2020 - 32; http://dx.doi.org/10.1167/iovs.03-1169; PMID: 15161871
  • Flower RW, McLeod DS, Lutty GA, Goldberg B, Wajer SD. Postnatal retinal vascular development of the puppy. Invest Ophthalmol Vis Sci 1985; 26:957 - 68; PMID: 3159707
  • McLeod DS, Hasegawa T, Prow T, Merges C, Lutty G. The initial fetal human retinal vasculature develops by vasculogenesis. Dev Dyn 2006; 235:3336 - 47; http://dx.doi.org/10.1002/dvdy.20988; PMID: 17061263
  • Libby RT, Champliaud MF, Claudepierre T, Xu Y, Gibbons EP, Koch M, et al. Laminin expression in adult and developing retinae: evidence of two novel CNS laminins. J Neurosci 2000; 20:6517 - 28; PMID: 10964957
  • Morissette N, Carbonetto S. Laminin alpha 2 chain (M chain) is found within the pathway of avian and murine retinal projections. J Neurosci 1995; 15:8067 - 82; PMID: 8613743
  • Byström B, Virtanen I, Rousselle P, Gullberg D, Pedrosa-Domellöf F. Distribution of laminins in the developing human eye. Invest Ophthalmol Vis Sci 2006; 47:777 - 85; http://dx.doi.org/10.1167/iovs.05-0367; PMID: 16505007
  • Li YN, Radner S, French MM, Pinzón-Duarte G, Daly GH, Burgeson RE, et al. The γ3 chain of laminin is widely but differentially expressed in murine basement membranes: expression and functional studies. Matrix Biol 2012; 31:120 - 34; http://dx.doi.org/10.1016/j.matbio.2011.12.002; PMID: 22222602
  • Stenzel D, Franco CA, Estrach S, Mettouchi A, Sauvaget D, Rosewell I, et al. Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep 2011; 12:1135 - 43; http://dx.doi.org/10.1038/embor.2011.194; PMID: 21979816
  • Dong S, Landfair J, Balasubramani M, Bier ME, Cole G, Halfter W. Expression of basal lamina protein mRNAs in the early embryonic chick eye. J Comp Neurol 2002; 447:261 - 73; http://dx.doi.org/10.1002/cne.10245; PMID: 11984820
  • Halfter W, Dong S, Balasubramani M, Bier ME. Temporary disruption of the retinal basal lamina and its effect on retinal histogenesis. Dev Biol 2001; 238:79 - 96; http://dx.doi.org/10.1006/dbio.2001.0396; PMID: 11783995
  • Halfter W, Dong S, Dong A, Eller AW, Nischt R. Origin and turnover of ECM proteins from the inner limiting membrane and vitreous body. Eye (Lond) 2008; 22:1207 - 13; http://dx.doi.org/10.1038/eye.2008.19; PMID: 18344966
  • Halfter W, Dong S, Schurer B, Osanger A, Schneider W, Ruegg M, et al. Composition, synthesis, and assembly of the embryonic chick retinal basal lamina. Dev Biol 2000; 220:111 - 28; http://dx.doi.org/10.1006/dbio.2000.9649; PMID: 10753504
  • Halfter W, Dong S, Schurer B, Ring C, Cole GJ, Eller A. Embryonic synthesis of the inner limiting membrane and vitreous body. Invest Ophthalmol Vis Sci 2005; 46:2202 - 9; http://dx.doi.org/10.1167/iovs.04-1419; PMID: 15914642
  • Sarthy PV, Fu M. Localization of laminin B1 mRNA in retinal ganglion cells by in situ hybridization. J Cell Biol 1990; 110:2099 - 108; http://dx.doi.org/10.1083/jcb.110.6.2099; PMID: 2351694
  • Dong LJ, Chung AE. The expression of the genes for entactin, laminin A, laminin B1 and laminin B2 in murine lens morphogenesis and eye development. Differentiation 1991; 48:157 - 72; http://dx.doi.org/10.1111/j.1432-0436.1991.tb00254.x; PMID: 1725162
  • Libby RT, Xu Y, Selfors LM, Brunken WJ, Hunter DD. Identification of the cellular source of laminin beta2 in adult and developing vertebrate retinae. J Comp Neurol 1997; 389:655 - 67; http://dx.doi.org/10.1002/(SICI)1096-9861(19971229)389:4<655::AID-CNE8>3.0.CO;2-#; PMID: 9421145
  • Alpy F, Jivkov I, Sorokin L, Klein A, Arnold C, Huss Y, et al. Generation of a conditionally null allele of the laminin alpha1 gene. Genesis 2005; 43:59 - 70; http://dx.doi.org/10.1002/gene.20154; PMID: 16100707
  • Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 2004; 131:2247 - 56; http://dx.doi.org/10.1242/dev.01112; PMID: 15102706
  • Sasaki T, Fukai N, Mann K, Göhring W, Olsen BR, Timpl R. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J 1998; 17:4249 - 56; http://dx.doi.org/10.1093/emboj/17.15.4249; PMID: 9687493
  • Colognato-Pyke H, O’Rear JJ, Yamada Y, Carbonetto S, Cheng YS, Yurchenco PD. Mapping of network-forming, heparin-binding, and alpha 1 beta 1 integrin-recognition sites within the alpha-chain short arm of laminin-1. J Biol Chem 1995; 270:9398 - 406; http://dx.doi.org/10.1074/jbc.270.16.9398; PMID: 7721864
  • Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Dev Dyn 2000; 218:213 - 34; http://dx.doi.org/10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R; PMID: 10842354
  • Hering H, Koulen P, Kröger S. Distribution of the integrin beta 1 subunit on radial cells in the embryonic and adult avian retina. J Comp Neurol 2000; 424:153 - 64; http://dx.doi.org/10.1002/1096-9861(20000814)424:1<153::AID-CNE11>3.0.CO;2-1; PMID: 10888745
  • Brem RB, Robbins SG, Wilson DJ, O’Rourke LM, Mixon RN, Robertson JE, et al. Immunolocalization of integrins in the human retina. Invest Ophthalmol Vis Sci 1994; 35:3466 - 74; PMID: 8056522
  • Claudepierre T, Dalloz C, Mornet D, Matsumura K, Sahel J, Rendon A. Characterization of the intermolecular associations of the dystrophin-associated glycoprotein complex in retinal Müller glial cells. J Cell Sci 2000; 113:3409 - 17; PMID: 10984432
  • Blank M, Koulen P, Kröger S. Subcellular concentration of beta-dystroglycan in photoreceptors and glial cells of the chick retina. J Comp Neurol 1997; 389:668 - 78; http://dx.doi.org/10.1002/(SICI)1096-9861(19971229)389:4<668::AID-CNE9>3.0.CO;2-Z; PMID: 9421146
  • Semina EV, Bosenko DV, Zinkevich NC, Soules KA, Hyde DR, Vihtelic TS, et al. Mutations in laminin alpha 1 result in complex, lens-independent ocular phenotypes in zebrafish. Dev Biol 2006; 299:63 - 77; http://dx.doi.org/10.1016/j.ydbio.2006.07.005; PMID: 16973147
  • Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 2004; 20:255 - 84; http://dx.doi.org/10.1146/annurev.cellbio.20.010403.094555; PMID: 15473841
  • Edwards MM, Mammadova-Bach E, Alpy F, Klein A, Hicks WL, Roux M, et al. Mutations in Lama1 disrupt retinal vascular development and inner limiting membrane formation. J Biol Chem 2010; 285:7697 - 711; http://dx.doi.org/10.1074/jbc.M109.069575; PMID: 20048158
  • Edwards MM, McLeod DS, Grebe R, Heng C, Lefebvre O, Lutty GA. Lama1 mutations lead to vitreoretinal blood vessel formation, persistence of fetal vasculature, and epiretinal membrane formation in mice. BMC Dev Biol 2011; 11:60; http://dx.doi.org/10.1186/1471-213X-11-60; PMID: 21999428
  • Heng C, Lefebvre O, Klein A, Edwards MM, Simon-Assmann P, Orend G, et al. Functional role of laminin α1 chain during cerebellum development. Cell Adh Migr 2011; 5:480 - 9; http://dx.doi.org/10.4161/cam.5.6.19191; PMID: 22274713
  • Ichikawa-Tomikawa N, Ogawa J, Douet V, Xu Z, Kamikubo Y, Sakurai T, et al. Laminin α1 is essential for mouse cerebellar development. Matrix Biol 2012; 31:17 - 28; http://dx.doi.org/10.1016/j.matbio.2011.09.002; PMID: 21983115
  • Méhes E, Czirók A, Hegedüs B, Vicsek T, Jancsik V. Laminin-1 increases motility, path-searching, and process dynamism of rat and mouse Muller glial cells in vitro: implication of relationship between cell behavior and formation of retinal morphology. Cell Motil Cytoskeleton 2002; 53:203 - 13; http://dx.doi.org/10.1002/cm.10062; PMID: 12211102
  • Wuestefeld R, Chen J, Meller K, Brand-Saberi B, Theiss C. Impact of vegf on astrocytes: analysis of gap junctional intercellular communication, proliferation, and motility. Glia 2012; 60:936 - 47; http://dx.doi.org/10.1002/glia.22325; PMID: 22431192
  • Goldberg MF. Persistent fetal vasculature (PFV): an integrated interpretation of signs and symptoms associated with persistent hyperplastic primary vitreous (PHPV). LIV Edward Jackson Memorial Lecture. Am J Ophthalmol 1997; 124:587 - 626; PMID: 9372715
  • Duh EJ, Yao YG, Dagli M, Goldberg MF. Persistence of fetal vasculature in a patient with Knobloch syndrome: potential role for endostatin in fetal vascular remodeling of the eye. Ophthalmology 2004; 111:1885 - 8; http://dx.doi.org/10.1016/S0161-6420(04)00666-9; PMID: 15465551
  • Cowley M, Conway BP, Campochiaro PA, Kaiser D, Gaskin H. Clinical risk factors for proliferative vitreoretinopathy. Arch Ophthalmol 1989; 107:1147 - 51; http://dx.doi.org/10.1001/archopht.1989.01070020213027; PMID: 2757544
  • Lei H, Rheaume MA, Kazlauskas A. Recent developments in our understanding of how platelet-derived growth factor (PDGF) and its receptors contribute to proliferative vitreoretinopathy. Exp Eye Res 2010; 90:376 - 81; http://dx.doi.org/10.1016/j.exer.2009.11.003; PMID: 19931527
  • Machemer R. Proliferative vitreoretinopathy (PVR): a personal account of its pathogenesis and treatment. Proctor lecture. Invest Ophthalmol Vis Sci 1988; 29:1771 - 83; PMID: 3056866
  • Sethi CS, Lewis GP, Fisher SK, Leitner WP, Mann DL, Luthert PJ, et al. Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 2005; 46:329 - 42; http://dx.doi.org/10.1167/iovs.03-0518; PMID: 15623793
  • Manschot WA. Persistent hyperplastic primary vitreous; special reference to preretinal glial tissue as a pathological characteristic and to the development of the primary vitreous. AMA Arch Ophthalmol 1958; 59:188 - 203; http://dx.doi.org/10.1001/archopht.1958.00940030054004; PMID: 13497373
  • Zhang C, Gehlbach P, Gongora C, Cano M, Fariss R, Hose S, et al. A potential role for beta- and gamma-crystallins in the vascular remodeling of the eye. Dev Dyn 2005; 234:36 - 47; http://dx.doi.org/10.1002/dvdy.20494; PMID: 16003775
  • Rubinstein K. Posterior hyperplastic primary vitreous. Br J Ophthalmol 1980; 64:105 - 11; http://dx.doi.org/10.1136/bjo.64.2.105; PMID: 7362810
  • Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 2005; 85:979 - 1000; http://dx.doi.org/10.1152/physrev.00014.2004; PMID: 15987800
  • Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol 2002; 22:1194 - 202; http://dx.doi.org/10.1128/MCB.22.4.1194-1202.2002; PMID: 11809810
  • Bredrup C, Matejas V, Barrow M, Bláhová K, Bockenhauer D, Fowler DJ, et al. Ophthalmological aspects of Pierson syndrome. Am J Ophthalmol 2008; 146:602 - 11; http://dx.doi.org/10.1016/j.ajo.2008.05.039; PMID: 18672223
  • Zenker M, Aigner T, Wendler O, Tralau T, Müntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 2004; 13:2625 - 32; http://dx.doi.org/10.1093/hmg/ddh284; PMID: 15367484
  • Dénes V, Witkovsky P, Koch M, Hunter DD, Pinzón-Duarte G, Brunken WJ. Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. Vis Neurosci 2007; 24:549 - 62; http://dx.doi.org/10.1017/S0952523807070514; PMID: 17711601
  • Libby RT, Lavallee CR, Balkema GW, Brunken WJ, Hunter DD. Disruption of laminin beta2 chain production causes alterations in morphology and function in the CNS. J Neurosci 1999; 19:9399 - 411; PMID: 10531444
  • Dénes V, Witkovsky P, Koch M, Hunter DD, Pinzón-Duarte G, Brunken WJ. Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. Vis Neurosci 2007; 24:549 - 62; http://dx.doi.org/10.1017/S0952523807070514; PMID: 17711601
  • Pinzón-Duarte G, Daly G, Li YN, Koch M, Brunken WJ. Defective formation of the inner limiting membrane in laminin beta2- and gamma3-null mice produces retinal dysplasia. Invest Ophthalmol Vis Sci 2010; 51:1773 - 82; http://dx.doi.org/10.1167/iovs.09-4645; PMID: 19907020