1,144
Views
12
CrossRef citations to date
0
Altmetric
Review

The effect of mechanical strain on soft (cardiovascular) and hard (bone) tissues

Common pathways for different biological outcomes

, , , &
Pages 165-173 | Received 03 Oct 2012, Accepted 27 Nov 2012, Published online: 03 Jan 2013

References

  • Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3:Suppl 3 S131 - 9; http://dx.doi.org/10.2215/CJN.04151206; PMID: 18988698
  • Confavreux CB. Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney Int Suppl 2011; 121:S14 - 9; http://dx.doi.org/10.1038/ki.2011.25; PMID: 21346725
  • Henriksen K, Neutzsky-Wulff AV, Bonewald LF, Karsdal MA. Local communication on and within bone controls bone remodeling. Bone 2009; 44:1026 - 33; http://dx.doi.org/10.1016/j.bone.2009.03.671; PMID: 19345750
  • Skerry TM. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 2008; 473:117 - 23; http://dx.doi.org/10.1016/j.abb.2008.02.028; PMID: 18334226
  • Turner CH, Warden SJ, Bellido T, Plotkin LI, Kumar N, Jasiuk I, et al. Mechanobiology of the skeleton. Sci Signal 2009; 2:pt3; http://dx.doi.org/10.1126/scisignal.268pt3; PMID: 19401590
  • Aarden EM, Nijweide PJ, van der Plas A, Alblas MJ, Mackie EJ, Horton MA, et al. Adhesive properties of isolated chick osteocytes in vitro. Bone 1996; 18:305 - 13; http://dx.doi.org/10.1016/8756-3282(96)00010-5; PMID: 8726386
  • Bonewald LF. Mechanosensation and transduction in osteocytes. Bonekey Osteovision 2006; 3:7 - 15; http://dx.doi.org/10.1138/20060233; PMID: 17415409
  • Burger EH, Klein-Nulend J, van der Plas A, Nijweide PJ. Function of osteocytes in bone--their role in mechanotransduction. J Nutr 1995; 125:Suppl 2020S - 3S; PMID: 7602386
  • Burger EH, Klein-Nulend J. Mechanotransduction in bone--role of the lacuno-canalicular network. FASEB J 1999; 13:Suppl S101 - 12; PMID: 10352151
  • Yang PF, Brüggemann GP, Rittweger J. What do we currently know from in vivo bone strain measurements in humans?. J Musculoskelet Neuronal Interact 2011; 11:8 - 20; PMID: 21364270
  • Mikuni-Takagaki Y, Suzuki Y, Kawase T, Saito S. Distinct responses of different populations of bone cells to mechanical stress. Endocrinology 1996; 137:2028 - 35; http://dx.doi.org/10.1210/en.137.5.2028; PMID: 8612544
  • Cowin SC. Mechanosensation and fluid transport in living bone. J Musculoskelet Neuronal Interact 2002; 2:256 - 60; PMID: 15758447
  • Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 1995; 9:441 - 5; PMID: 7896017
  • Westbroek I, Ajubi NE, Alblas MJ, Semeins CM, Klein-Nulend J, Burger EH, et al. Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun 2000; 268:414 - 9; http://dx.doi.org/10.1006/bbrc.2000.2154; PMID: 10679219
  • Guharay F, Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 1984; 352:685 - 701; PMID: 6086918
  • Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene 2012; 503:179 - 93; http://dx.doi.org/10.1016/j.gene.2012.04.076; PMID: 22575727
  • Alford AI, Jacobs CR, Donahue HJ. Oscillating fluid flow regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism small star, filled. Bone 2003; 33:64 - 70; http://dx.doi.org/10.1016/S8756-3282(03)00167-4; PMID: 12919700
  • Duncan RL, Hruska KA, Misler S. Parathyroid hormone activation of stretch-activated cation channels in osteosarcoma cells (UMR-106.01). FEBS Lett 1992; 307:219 - 23; http://dx.doi.org/10.1016/0014-5793(92)80771-8; PMID: 1379539
  • Duncan RL, Hruska KA. Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol 1994; 267:F909 - 16; PMID: 7528987
  • Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene 2006; 367:1 - 16; http://dx.doi.org/10.1016/j.gene.2005.10.028; PMID: 16361069
  • Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 2006; 349:1 - 5; http://dx.doi.org/10.1016/j.bbrc.2006.07.214; PMID: 16930556
  • Jiang JX, Gu S. Gap junction- and hemichannel-independent actions of connexins. Biochim Biophys Acta 2005; 1711:208 - 14; http://dx.doi.org/10.1016/j.bbamem.2004.10.001; PMID: 15955305
  • Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep 2010; 8:98 - 104; http://dx.doi.org/10.1007/s11914-010-0015-2; PMID: 20425617
  • Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem 2007; 101:1266 - 77; http://dx.doi.org/10.1002/jcb.21249; PMID: 17265428
  • Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 2004; 14:1 - 41; http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.v14.i12.10; PMID: 15104525
  • Skerry TM, Bitensky L, Chayen J, Lanyon LE. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 1989; 4:783 - 8; http://dx.doi.org/10.1002/jbmr.5650040519; PMID: 2816520
  • Rubanyi GM. The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol 1993; 22:Suppl 4 S1 - 14; http://dx.doi.org/10.1097/00005344-199322004-00002; PMID: 7523767
  • Albinsson S, Hellstrand P. Integration of signal pathways for stretch-dependent growth and differentiation in vascular smooth muscle. Am J Physiol Cell Physiol 2007; 293:C772 - 82; http://dx.doi.org/10.1152/ajpcell.00622.2006; PMID: 17507430
  • Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A, et al. Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 2001; 89:251 - 8; http://dx.doi.org/10.1161/hh1501.094265; PMID: 11485975
  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84:767 - 801; http://dx.doi.org/10.1152/physrev.00041.2003; PMID: 15269336
  • Hipper A, Isenberg G. Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch 2000; 440:19 - 27; PMID: 10863993
  • O’Callaghan CJ, Williams B. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta(1). Hypertension 2000; 36:319 - 24; http://dx.doi.org/10.1161/01.HYP.36.3.319; PMID: 10988258
  • Lee T, Sumpio BE. Cell signalling in vascular cells exposed to cyclic strain: the emerging role of protein phosphatases. Biotechnol Appl Biochem 2004; 39:129 - 39; http://dx.doi.org/10.1042/BA20030104; PMID: 15032733
  • Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AW, Resink TJ, et al. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem 1995; 144:131 - 9; http://dx.doi.org/10.1007/BF00944392; PMID: 7623784
  • Cheng GC, Briggs WH, Gerson DS, Libby P, Grodzinsky AJ, Gray ML, et al. Mechanical strain tightly controls fibroblast growth factor-2 release from cultured human vascular smooth muscle cells. Circ Res 1997; 80:28 - 36; http://dx.doi.org/10.1161/01.RES.80.1.28; PMID: 8978319
  • Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol 2001; 280:H909 - 17; PMID: 11158993
  • Chien S, Li S, Shyy YJ. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 1998; 31:162 - 9; http://dx.doi.org/10.1161/01.HYP.31.1.162; PMID: 9453297
  • Shyu KG. Cellular and molecular effects of mechanical stretch on vascular cells and cardiac myocytes. Clin Sci (Lond) 2009; 116:377 - 89; http://dx.doi.org/10.1042/CS20080163; PMID: 19175356
  • Boccafoschi F, Mosca C, Bosetti M, Cannas M. The role of mechanical stretching in the activation and localization of adhesion proteins and related intracellular molecules. J Cell Biochem 2011; 112:1403 - 9; http://dx.doi.org/10.1002/jcb.23056; PMID: 21321993
  • Lehoux S, Castier Y, Tedgui A. Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 2006; 259:381 - 92; http://dx.doi.org/10.1111/j.1365-2796.2006.01624.x; PMID: 16594906
  • Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Natl Acad Sci U S A 2003; 100:13298 - 302; http://dx.doi.org/10.1073/pnas.2336149100; PMID: 14593208
  • Lehoux S, Esposito B, Merval R, Tedgui A. Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation 2005; 111:643 - 9; http://dx.doi.org/10.1161/01.CIR.0000154548.16191.2F; PMID: 15668343
  • Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J Biomech 2003; 36:631 - 43; http://dx.doi.org/10.1016/S0021-9290(02)00441-4; PMID: 12694993
  • Aplin AE, Howe A, Alahari SK, Juliano RL. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 1998; 50:197 - 263; PMID: 9647866
  • Eliceiri BP, Cheresh DA. The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 1999; 103:1227 - 30; http://dx.doi.org/10.1172/JCI6869; PMID: 10225964
  • Wilson E, Sudhir K, Ives HE. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest 1995; 96:2364 - 72; http://dx.doi.org/10.1172/JCI118293; PMID: 7593624
  • Marrero MB, Paxton WG, Schieffer B, Ling BN, Bernstein KE. Angiotensin II signalling events mediated by tyrosine phosphorylation. Cell Signal 1996; 8:21 - 6; http://dx.doi.org/10.1016/0898-6568(95)02016-0; PMID: 8777137
  • Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993; 268:14553 - 6; PMID: 8325833
  • Herlaar E, Brown Z. p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 1999; 5:439 - 47; http://dx.doi.org/10.1016/S1357-4310(99)01544-0; PMID: 10498912
  • Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci 1998; 851:139 - 46; http://dx.doi.org/10.1111/j.1749-6632.1998.tb08987.x; PMID: 9668616
  • Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995; 9:726 - 35; PMID: 7601337
  • Reusch HP, Chan G, Ives HE, Nemenoff RA. Activation of JNK/SAPK and ERK by mechanical strain in vascular smooth muscle cells depends on extracellular matrix composition. Biochem Biophys Res Commun 1997; 237:239 - 44; http://dx.doi.org/10.1006/bbrc.1997.7121; PMID: 9268693
  • Lehoux S, Esposito B, Merval R, Loufrani L, Tedgui A. Pulsatile stretch-induced extracellular signal-regulated kinase 1/2 activation in organ culture of rabbit aorta involves reactive oxygen species. Arterioscler Thromb Vasc Biol 2000; 20:2366 - 72; http://dx.doi.org/10.1161/01.ATV.20.11.2366; PMID: 11073839
  • Standley PR, Cammarata A, Nolan BP, Purgason CT, Stanley MA. Cyclic stretch induces vascular smooth muscle cell alignment via NO signaling. Am J Physiol Heart Circ Physiol 2002; 283:H1907 - 14; PMID: 12384468
  • Chen Q, Li W, Quan Z, Sumpio BE. Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase. J Vasc Surg 2003; 37:660 - 8; http://dx.doi.org/10.1067/mva.2003.95; PMID: 12618707
  • Liu B, Qu MJ, Qin KR, Li H, Li ZK, Shen BR, et al. Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys J 2008; 94:1497 - 507; http://dx.doi.org/10.1529/biophysj.106.098574; PMID: 17993501
  • Qu MJ, Liu B, Wang HQ, Yan ZQ, Shen BR, Jiang ZL. Frequency-dependent phenotype modulation of vascular smooth muscle cells under cyclic mechanical strain. J Vasc Res 2007; 44:345 - 53; http://dx.doi.org/10.1159/000102278; PMID: 17713348
  • Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res 1999; 85:5 - 11; http://dx.doi.org/10.1161/01.RES.85.1.5; PMID: 10400905
  • Goldman J, Zhong L, Liu SQ. Negative regulation of vascular smooth muscle cell migration by blood shear stress. Am J Physiol Heart Circ Physiol 2007; 292:H928 - 38; http://dx.doi.org/10.1152/ajpheart.00821.2006; PMID: 17012348
  • Li C, Wernig F, Leitges M, Hu Y, Xu Q. Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. FASEB J 2003; 17:2106 - 8; PMID: 12958154
  • Xu Z, Fukuda T, Li Y, Zha X, Qin J, Wu C. Molecular dissection of PINCH-1 reveals a mechanism of coupling and uncoupling of cell shape modulation and survival. J Biol Chem 2005; 280:27631 - 7; http://dx.doi.org/10.1074/jbc.M504189200; PMID: 15941716
  • Lemarié CA, Tharaux PL, Esposito B, Tedgui A, Lehoux S. Transforming growth factor-α mediates nuclear factor kappaB activation in strained arteries. Circ Res 2006; 99:434 - 41; http://dx.doi.org/10.1161/01.RES.0000237388.89261.47; PMID: 16857964
  • Putman AJ, Cunningham JJ, Pillemer VB, Mooney DJ. External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly. Am J Physiol Cell Physiol 2002; 284:C627 - 39; PMID: 12409284
  • Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, et al. Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 1990; 265:3595 - 8; PMID: 2105950
  • Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem 1992; 267:10551 - 60; PMID: 1534087
  • De R, Zemel A, Safran SA. Do cells sense stress or strain? Measurement of cellular orientation can provide a clue. Biophys J 2008; 94:L29 - 31; http://dx.doi.org/10.1529/biophysj.107.126060; PMID: 18192355
  • Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, et al. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng 2003; 81:578 - 87; http://dx.doi.org/10.1002/bit.10506; PMID: 12514807
  • Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A 2000; 97:931 - 6; http://dx.doi.org/10.1073/pnas.97.2.931; PMID: 10639182
  • Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol 2010; 48:490 - 6; http://dx.doi.org/10.1016/j.yjmcc.2009.08.003; PMID: 19686759
  • Shewan AM, Maddugoda M, Kraemer A, Stehbens SJ, Verma S, Kovacs EM, et al. Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell 2005; 16:4531 - 42; http://dx.doi.org/10.1091/mbc.E05-04-0330; PMID: 16030252
  • Tokuyasu KT, Dutton AH, Geiger B, Singer SJ. Ultrastructure of chicken cardiac muscle as studied by double immunolabeling in electron microscopy. Proc Natl Acad Sci U S A 1981; 78:7619 - 23; http://dx.doi.org/10.1073/pnas.78.12.7619; PMID: 6801654
  • Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta 2008; 1778:572 - 87; http://dx.doi.org/10.1016/j.bbamem.2007.07.014; PMID: 17854763
  • Zhuang J, Yamada KA, Saffitz JE, Kléber AG. Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ Res 2000; 87:316 - 22; http://dx.doi.org/10.1161/01.RES.87.4.316; PMID: 10948066
  • Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 1994; 107:3655 - 63; PMID: 7706414
  • Jou TS, Stewart DB, Stappert J, Nelson WJ, Marrs JA. Genetic and biochemical dissection of protein linkages in the cadherin-catenin complex. Proc Natl Acad Sci U S A 1995; 92:5067 - 71; http://dx.doi.org/10.1073/pnas.92.11.5067; PMID: 7761449
  • Salameh A, Dhein S.. Effect of mechanical forces and stretch on intercellular gap junction coupling. Biochim Biophys Acta 2013; 1828:147 - 56; http://dx.doi.org/10.1016/j.bbamem.2011.12.030; PMID: 22245380
  • Baines CP, Molkentin JD. STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 2005; 38:47 - 62; http://dx.doi.org/10.1016/j.yjmcc.2004.11.004; PMID: 15623421
  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, et al. Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest 1995; 96:438 - 46; http://dx.doi.org/10.1172/JCI118054; PMID: 7615816
  • Komuro I, Kudo S, Yamazaki T, Zou Y, Shiojima I, Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J 1996; 10:631 - 6; PMID: 8621062
  • Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 1997; 59:551 - 71; http://dx.doi.org/10.1146/annurev.physiol.59.1.551; PMID: 9074777
  • Leychenko A, Konorev E, Jijiwa M, Matter ML. Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes. PLoS One 2011; 6:e29055; http://dx.doi.org/10.1371/journal.pone.0029055; PMID: 22174951
  • Vandenburgh HH. Mechanical force and their second messengers in stimulating cell growth in vitro. Am J Physiol 1992; 262:350 - 5
  • Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94:1543 - 53; http://dx.doi.org/10.1161/01.RES.0000130526.20854.fa; PMID: 15217919

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.