1,138
Views
15
CrossRef citations to date
0
Altmetric
Commentary

Protein tyrosine phosphatase PTP1B in cell adhesion and migration

, , &
Pages 418-423 | Received 05 Aug 2013, Accepted 04 Sep 2013, Published online: 12 Sep 2013

References

  • Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 1992; 68:545 - 60; http://dx.doi.org/10.1016/0092-8674(92)90190-N; PMID: 1739967
  • Hernández MV, Sala MG, Balsamo J, Lilien J, Arregui CO. ER-bound PTP1B is targeted to newly forming cell-matrix adhesions. J Cell Sci 2006; 119:1233 - 43; http://dx.doi.org/10.1242/jcs.02846; PMID: 16522684
  • Fuentes F, Arregui CO. Microtubule and cell contact dependency of ER-bound PTP1B localization in growth cones. Mol Biol Cell 2009; 20:1878 - 89; http://dx.doi.org/10.1091/mbc.E08-07-0675; PMID: 19158394
  • Arias-Salgado EG, Haj F, Dubois C, Moran B, Kasirer-Friede A, Furie BC, Furie B, Neel BG, Shattil SJ. PTP-1B is an essential positive regulator of platelet integrin signaling. J Cell Biol 2005; 170:837 - 45; http://dx.doi.org/10.1083/jcb.200503125; PMID: 16115959
  • Anderie I, Schulz I, Schmid A. Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cell Signal 2007; 19:582 - 92; http://dx.doi.org/10.1016/j.cellsig.2006.08.007; PMID: 17092689
  • Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. PTP1B regulates Eph receptor function and trafficking. J Cell Biol 2010; 191:1189 - 203; http://dx.doi.org/10.1083/jcb.201005035; PMID: 21135139
  • Haj FG, Sabet O, Kinkhabwala A, Wimmer-Kleikamp S, Roukos V, Han HM, Grabenbauer M, Bierbaum M, Antony C, Neel BG, et al. Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLoS One 2012; 7:e36633; http://dx.doi.org/10.1371/journal.pone.0036633; PMID: 22655028
  • Monteleone MC, González Wusener AE, Burdisso JE, Conde C, Cáceres A, Arregui CO. ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS One 2012; 7:e38948; http://dx.doi.org/10.1371/journal.pone.0038948; PMID: 22701734
  • Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 2002; 295:1708 - 11; http://dx.doi.org/10.1126/science.1067566; PMID: 11872838
  • Liu F, Hill DE, Chernoff J. Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). J Biol Chem 1996; 271:31290 - 5; http://dx.doi.org/10.1074/jbc.271.49.31290; PMID: 8940134
  • Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG. Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J 1993; 12:4843 - 56; PMID: 8223493
  • Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J Cell Biol 2008; 180:957 - 71; http://dx.doi.org/10.1083/jcb.200708048; PMID: 18332219
  • Flint AJ, Tiganis T, Barford D, Tonks NK. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 1997; 94:1680 - 5; http://dx.doi.org/10.1073/pnas.94.5.1680; PMID: 9050838
  • Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H. Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 2008; 7:1763 - 77; http://dx.doi.org/10.1074/mcp.M800196-MCP200; PMID: 18515860
  • Yip SC, Saha S, Chernoff J. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci 2010; 35:442 - 9; http://dx.doi.org/10.1016/j.tibs.2010.03.004; PMID: 20381358
  • Lessard L, Stuible M, Tremblay ML. The two faces of PTP1B in cancer. Biochim Biophys Acta 2010; 1804:613 - 9; http://dx.doi.org/10.1016/j.bbapap.2009.09.018; PMID: 19782770
  • Arregui CO, Balsamo J, Lilien J. Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. J Cell Biol 1998; 143:861 - 73; http://dx.doi.org/10.1083/jcb.143.3.861; PMID: 9813103
  • Liang F, Lee SY, Liang J, Lawrence DS, Zhang ZY. The role of protein-tyrosine phosphatase 1B in integrin signaling. J Biol Chem 2005; 280:24857 - 63; http://dx.doi.org/10.1074/jbc.M502780200; PMID: 15866871
  • Pathre P, Arregui C, Wampler T, Kue I, Leung TC, Lilien J, Balsamo J. PTP1B regulates neurite extension mediated by cell-cell and cell-matrix adhesion molecules. J Neurosci Res 2001; 63:143 - 50; http://dx.doi.org/10.1002/1097-4547(20010115)63:2<143::AID-JNR1006>3.0.CO;2-1; PMID: 11169624
  • Blanquart C, Karouri SE, Issad T. Protein tyrosine phosphatase-1B and T-cell protein tyrosine phosphatase regulate IGF-2-induced MCF-7 cell migration. Biochem Biophys Res Commun 2010; 392:83 - 8; http://dx.doi.org/10.1016/j.bbrc.2009.12.176; PMID: 20059965
  • Lessard L, Labbé DP, Deblois G, Bégin LR, Hardy S, Mes-Masson AM, Saad F, Trotman LC, Giguère V, Tremblay ML. PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer. Cancer Res 2012; 72:1529 - 37; http://dx.doi.org/10.1158/0008-5472.CAN-11-2602; PMID: 22282656
  • Takino T, Tamura M, Miyamori H, Araki M, Matsumoto K, Sato H, Yamada KM. Tyrosine phosphorylation of the CrkII adaptor protein modulates cell migration. J Cell Sci 2003; 116:3145 - 55; http://dx.doi.org/10.1242/jcs.00632; PMID: 12799422
  • Liu F, Sells MA, Chernoff J. Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Curr Biol 1998; 8:173 - 6; http://dx.doi.org/10.1016/S0960-9822(98)70066-1; PMID: 9443918
  • Buckley DA, Cheng A, Kiely PA, Tremblay ML, O’Connor R. Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Mol Cell Biol 2002; 22:1998 - 2010; http://dx.doi.org/10.1128/MCB.22.7.1998-2010.2002; PMID: 11884589
  • Pu Q, Zhuang D, Thakran S, Hassid A. Mechanisms related to NO-induced motility in differentiated rat aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2011; 300:H101 - 8; http://dx.doi.org/10.1152/ajpheart.00342.2010; PMID: 21037226
  • Fan G, Lin G, Lucito R, Tonks NK. Protein-tyrosine Phosphatase 1B Antagonized Signaling by Insulin-like Growth Factor-1 Receptor and Kinase BRK/PTK6 in Ovarian Cancer Cells. J Biol Chem 2013; 288:24923 - 34; http://dx.doi.org/10.1074/jbc.M113.482737; PMID: 23814047
  • Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 2012; 22:21 - 35; http://dx.doi.org/10.1016/j.ccr.2012.05.037; PMID: 22789536
  • Burdisso JE, González A, Arregui CO. PTP1B promotes focal complex maturation, lamellar persistence and directional migration. J Cell Sci 2013; 126:1820 - 31; http://dx.doi.org/10.1242/jcs.118828; PMID: 23444382
  • Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 2010; 26:315 - 33; http://dx.doi.org/10.1146/annurev.cellbio.011209.122036; PMID: 19575647
  • Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 2008; 10:1039 - 50; http://dx.doi.org/10.1038/ncb1763; PMID: 19160484
  • Kaverina I, Straube A. Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol 2011; 22:968 - 74; http://dx.doi.org/10.1016/j.semcdb.2011.09.017; PMID: 22001384
  • Stehbens S, Wittmann T. Targeting and transport: how microtubules control focal adhesion dynamics. J Cell Biol 2012; 198:481 - 9; http://dx.doi.org/10.1083/jcb.201206050; PMID: 22908306
  • Waterman-Storer CM, Salmon ED. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol 1998; 8:798 - 806; http://dx.doi.org/10.1016/S0960-9822(98)70321-5; PMID: 9663388
  • Feiguin F, Ferreira A, Kosik KS, Caceres A. Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol 1994; 127:1021 - 39; http://dx.doi.org/10.1083/jcb.127.4.1021; PMID: 7962067
  • Santama N, Er CP, Ong LL, Yu H. Distribution and functions of kinectin isoforms. J Cell Sci 2004; 117:4537 - 49; http://dx.doi.org/10.1242/jcs.01326; PMID: 15316074
  • Zhang X, Tee YH, Heng JK, Zhu Y, Hu X, Margadant F, Ballestrem C, Bershadsky A, Griffiths G, Yu H. Kinectin-mediated endoplasmic reticulum dynamics supports focal adhesion growth in the cellular lamella. J Cell Sci 2010; 123:3901 - 12; http://dx.doi.org/10.1242/jcs.069153; PMID: 20980389
  • Tomar A, Schlaepfer DD. Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 2009; 21:676 - 83; http://dx.doi.org/10.1016/j.ceb.2009.05.006; PMID: 19525103
  • Pasapera AM, Schneider IC, Rericha E, Schlaepfer DD, Waterman CM. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol 2010; 188:877 - 90; http://dx.doi.org/10.1083/jcb.200906012; PMID: 20308429
  • Michael KE, Dumbauld DW, Burns KL, Hanks SK, García AJ. Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell 2009; 20:2508 - 19; http://dx.doi.org/10.1091/mbc.E08-01-0076; PMID: 19297531
  • Lawson C, Lim ST, Uryu S, Chen XL, Calderwood DA, Schlaepfer DD. FAK promotes recruitment of talin to nascent adhesions to control cell motility. J Cell Biol 2012; 196:223 - 32; http://dx.doi.org/10.1083/jcb.201108078; PMID: 22270917
  • Izaguirre G, Aguirre L, Hu YP, Lee HY, Schlaepfer DD, Aneskievich BJ, Haimovich B. The cytoskeletal/non-muscle isoform of alpha-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase. J Biol Chem 2001; 276:28676 - 85; http://dx.doi.org/10.1074/jbc.M101678200; PMID: 11369769
  • von Wichert G, Haimovich B, Feng GS, Sheetz MP. Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J 2003; 22:5023 - 35; http://dx.doi.org/10.1093/emboj/cdg492; PMID: 14517241
  • Zhang Z, Lin SY, Neel BG, Haimovich B. Phosphorylated alpha-actinin and protein-tyrosine phosphatase 1B coregulate the disassembly of the focal adhesion kinase x Src complex and promote cell migration. J Biol Chem 2006; 281:1746 - 54; http://dx.doi.org/10.1074/jbc.M509590200; PMID: 16291744
  • Lee HH, Lee HC, Chou CC, Hur SS, Osterday K, del Álamo JC, Lasheras JC, Chien S. Shp2 plays a crucial role in cell structural orientation and force polarity in response to matrix rigidity. Proc Natl Acad Sci U S A 2013; 110:2840 - 5; http://dx.doi.org/10.1073/pnas.1222164110; PMID: 23359696
  • Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J Biol Chem 2000; 275:41439 - 46; http://dx.doi.org/10.1074/jbc.M004852200; PMID: 11007774
  • Arias-Romero LE, Saha S, Villamar-Cruz O, Yip SC, Ethier SP, Zhang ZY, Chernoff J. Activation of Src by protein tyrosine phosphatase 1B Is required for ErbB2 transformation of human breast epithelial cells. Cancer Res 2009; 69:4582 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-08-4001; PMID: 19435911
  • Cheng A, Bal GS, Kennedy BP, Tremblay ML. Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. J Biol Chem 2001; 276:25848 - 55; http://dx.doi.org/10.1074/jbc.M009734200; PMID: 11346638
  • Defilippi P, Di Stefano P, Cabodi S. p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol 2006; 16:257 - 63; http://dx.doi.org/10.1016/j.tcb.2006.03.003; PMID: 16581250
  • Deakin NO, Turner CE. Paxillin comes of age. J Cell Sci 2008; 121:2435 - 44; http://dx.doi.org/10.1242/jcs.018044; PMID: 18650496
  • Baquiran JB, Bradbury P, O’Neill GM. Tyrosine Y189 in the Substrate Domain of the Adhesion Docking Protein NEDD9 Is Conserved with p130Cas Y253 and Regulates NEDD9-Mediated Migration and Focal Adhesion Dynamics. PLoS One 2013; 8:e69304; http://dx.doi.org/10.1371/journal.pone.0069304; PMID: 23874939
  • DeMali KA, Burridge K. Coupling membrane protrusion and cell adhesion. J Cell Sci 2003; 116:2389 - 97; http://dx.doi.org/10.1242/jcs.00605; PMID: 12766185
  • Watanabe T, Noritake J, Kaibuchi K. Regulation of microtubules in cell migration. Trends Cell Biol 2005; 15:76 - 83; http://dx.doi.org/10.1016/j.tcb.2004.12.006; PMID: 15695094
  • Lee H, Xie L, Luo Y, Lee SY, Lawrence DS, Wang XB, Sotgia F, Lisanti MP, Zhang ZY. Identification of phosphocaveolin-1 as a novel protein tyrosine phosphatase 1B substrate. Biochemistry 2006; 45:234 - 40; http://dx.doi.org/10.1021/bi051560j; PMID: 16388599
  • Grande-García A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 2007; 177:683 - 94; http://dx.doi.org/10.1083/jcb.200701006; PMID: 17517963
  • Nethe M, Anthony EC, Fernandez-Borja M, Dee R, Geerts D, Hensbergen PJ, Deelder AM, Schmidt G, Hordijk PL. Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway. J Cell Sci 2010; 123:1948 - 58; http://dx.doi.org/10.1242/jcs.062919; PMID: 20460433
  • Stuible M, Dubé N, Tremblay ML. PTP1B regulates cortactin tyrosine phosphorylation by targeting Tyr446. J Biol Chem 2008; 283:15740 - 6; http://dx.doi.org/10.1074/jbc.M710534200; PMID: 18387954
  • MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a glance. J Cell Sci 2012; 125:1621 - 6; http://dx.doi.org/10.1242/jcs.093781; PMID: 22566665
  • Wang W, Liu Y, Liao K. Tyrosine phosphorylation of cortactin by the FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biol 2011; 12:49; http://dx.doi.org/10.1186/1471-2121-12-49; PMID: 22078467
  • Chodniewicz D, Klemke RL. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta 2004; 1692:63 - 76; http://dx.doi.org/10.1016/j.bbamcr.2004.03.006; PMID: 15246680
  • Lamorte L, Rodrigues S, Sangwan V, Turner CE, Park M. Crk associates with a multimolecular Paxillin/GIT2/beta-PIX complex and promotes Rac-dependent relocalization of Paxillin to focal contacts. Mol Biol Cell 2003; 14:2818 - 31; http://dx.doi.org/10.1091/mbc.E02-08-0497; PMID: 12857867
  • Anastasiadis PZ. p120-ctn: A nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta 2007; 1773:34 - 46; http://dx.doi.org/10.1016/j.bbamcr.2006.08.040; PMID: 17028013
  • Boguslavsky S, Grosheva I, Landau E, Shtutman M, Cohen M, Arnold K, Feinstein E, Geiger B, Bershadsky A. p120 catenin regulates lamellipodial dynamics and cell adhesion in cooperation with cortactin. Proc Natl Acad Sci U S A 2007; 104:10882 - 7; http://dx.doi.org/10.1073/pnas.0702731104; PMID: 17576929
  • Shi G, Yue G, Zhou R. EphA3 functions are regulated by collaborating phosphotyrosine residues. Cell Res 2010; 20:1263 - 75; http://dx.doi.org/10.1038/cr.2010.115; PMID: 20697431