2,040
Views
29
CrossRef citations to date
0
Altmetric
Review

Regulation of cadherin expression in nervous system development

, , &
Pages 19-28 | Received 04 Nov 2013, Accepted 14 Jan 2014, Published online: 01 Jan 2013

References

  • Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 2000; 299:551 - 72; http://dx.doi.org/10.1006/jmbi.2000.3777; PMID: 10835267
  • Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2009; 41:349 - 69; http://dx.doi.org/10.1016/j.biocel.2008.09.027; PMID: 18848899
  • Franke WW. Discovering the molecular components of intercellular junctions--a historical view. Cold Spring Harb Perspect Biol 2009; 1:a003061; http://dx.doi.org/10.1101/cshperspect.a003061; PMID: 20066111
  • Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 2012; 488:517 - 21; http://dx.doi.org/10.1038/nature11305; PMID: 22842903
  • Park KS, Gumbiner BM. Cadherin-6B stimulates an epithelial mesenchymal transition and the delamination of cells from the neural ectoderm via LIMK/cofilin mediated non-canonical BMP receptor signaling. Dev Biol 2012; 366:232 - 43; http://dx.doi.org/10.1016/j.ydbio.2012.04.005; PMID: 22537493
  • Dunne J, Hanby AM, Poulsom R, Jones TA, Sheer D, Chin WG, Da SM, Zhao Q, Beverley PC, Owen MJ. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 1995; 30:207 - 23; http://dx.doi.org/10.1006/geno.1995.9884; PMID: 8586420
  • Mitsui K, Nakajima D, Ohara O, Nakayama M. Mammalian fat3: a large protein that contains multiple cadherin and EGF-like motifs. Biochem Biophys Res Commun 2002; 290:1260 - 6; http://dx.doi.org/10.1006/bbrc.2002.6338; PMID: 11811999
  • Redies C, Takeichi M. N- and R-cadherin expression in the optic nerve of the chicken embryo. Glia 1993; 8:161 - 71; http://dx.doi.org/10.1002/glia.440080304; PMID: 8225558
  • Sano K, Tanihara H, Heimark RL, Obata S, Davidson M, St John T, Taketani S, Suzuki S. Protocadherins: a large family of cadherin-related molecules in central nervous system. EMBO J 1993; 12:2249 - 56; PMID: 8508762
  • Miskevich F, Zhu Y, Ranscht B, Sanes JR. Expression of multiple cadherins and catenins in the chick optic tectum. Mol Cell Neurosci 1998; 12:240 - 55; http://dx.doi.org/10.1006/mcne.1998.0718; PMID: 9828089
  • Bekirov IH, Needleman LA, Zhang W, Benson DL. Identification and localization of multiple classic cadherins in developing rat limbic system. Neuroscience 2002; 115:213 - 27; http://dx.doi.org/10.1016/S0306-4522(02)00375-5; PMID: 12401335
  • Vanhalst K, Kools P, Staes K, van Roy F, Redies C. delta-Protocadherins: a gene family expressed differentially in the mouse brain. Cell Mol Life Sci 2005; 62:1247 - 59; http://dx.doi.org/10.1007/s00018-005-5021-7; PMID: 15905963
  • Lefkovics K, Mayer M, Bercsényi K, Szabó G, Lele Z. Comparative analysis of type II classic cadherin mRNA distribution patterns in the developing and adult mouse somatosensory cortex and hippocampus suggests significant functional redundancy. J Comp Neurol 2012; 520:1387 - 405; http://dx.doi.org/10.1002/cne.22801; PMID: 22102170
  • Redies C. Cadherins in the central nervous system. Prog Neurobiol 2000; 61:611 - 48; http://dx.doi.org/10.1016/S0301-0082(99)00070-2; PMID: 10775799
  • Yagi T. Clustered protocadherin family. Dev Growth Differ 2008; 50:Suppl 1 S131 - 40; http://dx.doi.org/10.1111/j.1440-169X.2008.00991.x; PMID: 18430161
  • Kim SY, Yasuda S, Tanaka H, Yamagata K, Kim H. Non-clustered protocadherin. Cell Adh Migr 2011; 5:97 - 105; http://dx.doi.org/10.4161/cam.5.2.14374; PMID: 21173574
  • Redies C, Neudert F, Lin J. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization. Cerebellum 2011; 10:393 - 408; http://dx.doi.org/10.1007/s12311-010-0207-4; PMID: 20820976
  • Hirano S, Takeichi M. Cadherins in brain morphogenesis and wiring. Physiol Rev 2012; 92:597 - 634; http://dx.doi.org/10.1152/physrev.00014.2011; PMID: 22535893
  • Nose A, Tsuji K, Takeichi M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 1990; 61:147 - 55; http://dx.doi.org/10.1016/0092-8674(90)90222-Z; PMID: 2317870
  • Patel SD, Ciatto C, Chen CP, Bahna F, Rajebhosale M, Arkus N, Schieren I, Jessell TM, Honig B, Price SR, et al. Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 2006; 124:1255 - 68; http://dx.doi.org/10.1016/j.cell.2005.12.046; PMID: 16564015
  • Steinberg MS, Takeichi M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci U S A 1994; 91:206 - 9; http://dx.doi.org/10.1073/pnas.91.1.206; PMID: 8278366
  • Friedlander DR, Mège RM, Cunningham BA, Edelman GM. Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules (CAMs) expressed on cell surfaces. Proc Natl Acad Sci U S A 1989; 86:7043 - 7; http://dx.doi.org/10.1073/pnas.86.18.7043; PMID: 2780560
  • Tanihara H, Sano K, Heimark RL, St John T, Suzuki S. Cloning of five human cadherins clarifies characteristic features of cadherin extracellular domain and provides further evidence for two structurally different types of cadherin. Cell Adhes Commun 1994; 2:15 - 26; http://dx.doi.org/10.3109/15419069409014199; PMID: 7982033
  • Suzuki S, Sano K, Tanihara H. Diversity of the cadherin family: evidence for eight new cadherins in nervous tissue. Cell Regul 1991; 2:261 - 70; PMID: 2059658
  • Chu YS, Eder O, Thomas WA, Simcha I, Pincet F, Ben-Ze’ev A, Perez E, Thiery JP, Dufour S. Prototypical type I E-cadherin and type II cadherin-7 mediate very distinct adhesiveness through their extracellular domains. J Biol Chem 2006; 281:2901 - 10; http://dx.doi.org/10.1074/jbc.M506185200; PMID: 16253998
  • Thiery JP, Engl W, Viasnoff V, Dufour S. Biochemical and biophysical origins of cadherin selectivity and adhesion strength. Curr Opin Cell Biol 2012; 24:614 - 9; http://dx.doi.org/10.1016/j.ceb.2012.06.007; PMID: 22940105
  • Nakagawa S, Takeichi M. Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 1995; 121:1321 - 32; PMID: 7540531
  • Shimoyama Y, Tsujimoto G, Kitajima M, Natori M. Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem J 2000; 349:159 - 67; http://dx.doi.org/10.1042/0264-6021:3490159; PMID: 10861224
  • Inuzuka H, Miyatani S, Takeichi M. R-cadherin: a novel Ca(2+)-dependent cell-cell adhesion molecule expressed in the retina. Neuron 1991; 7:69 - 79; http://dx.doi.org/10.1016/0896-6273(91)90075-B; PMID: 1712604
  • Matsunami H, Miyatani S, Inoue T, Copeland NG, Gilbert DJ, Jenkins NA, Takeichi M. Cell binding specificity of mouse R-cadherin and chromosomal mapping of the gene. J Cell Sci 1993; 106:401 - 9; PMID: 8270638
  • Katsamba P, Carroll K, Ahlsen G, Bahna F, Vendome J, Posy S, Rajebhosale M, Price S, Jessell TM, Ben-Shaul A, et al. Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc Natl Acad Sci U S A 2009; 106:11594 - 9; http://dx.doi.org/10.1073/pnas.0905349106; PMID: 19553217
  • Williams EJ, Williams G, Howell FV, Skaper SD, Walsh FS, Doherty P. Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem 2001; 276:43879 - 86; http://dx.doi.org/10.1074/jbc.M105876200; PMID: 11571292
  • Boscher C, Mège RM. Cadherin-11 interacts with the FGF receptor and induces neurite outgrowth through associated downstream signalling. Cell Signal 2008; 20:1061 - 72; http://dx.doi.org/10.1016/j.cellsig.2008.01.008; PMID: 18302981
  • Okazaki M, Takeshita S, Kawai S, Kikuno R, Tsujimura A, Kudo A, Amann E. Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem 1994; 269:12092 - 8; PMID: 8163513
  • Sugimoto K, Honda S, Yamamoto T, Ueki T, Monden M, Kaji A, Matsumoto K, Nakamura T. Molecular cloning and characterization of a newly identified member of the cadherin family, PB-cadherin. J Biol Chem 1996; 271:11548 - 56; http://dx.doi.org/10.1074/jbc.271.19.11548; PMID: 8626716
  • Mbalaviele G, Nishimura R, Myoi A, Niewolna M, Reddy SV, Chen D, Feng J, Roodman D, Mundy GR, Yoneda T. Cadherin-6 mediates the heterotypic interactions between the hemopoietic osteoclast cell lineage and stromal cells in a murine model of osteoclast differentiation. [isoforms] J Cell Biol 1998; 141:1467 - 76; http://dx.doi.org/10.1083/jcb.141.6.1467; PMID: 9628901
  • Kawaguchi J, Takeshita S, Kashima T, Imai T, Machinami R, Kudo A. Expression and function of the splice variant of the human cadherin-11 gene in subordination to intact cadherin-11. J Bone Miner Res 1999; 14:764 - 75; http://dx.doi.org/10.1359/jbmr.1999.14.5.764; PMID: 10320525
  • Kawano R, Matsuo N, Tanaka H, Nasu M, Yoshioka H, Shirabe K. Identification and characterization of a soluble cadherin-7 isoform produced by alternative splicing. J Biol Chem 2002; 277:47679 - 85; http://dx.doi.org/10.1074/jbc.M205328200; PMID: 12364338
  • Katafiasz BJ, Nieman MT, Wheelock MJ, Johnson KR. Characterization of cadherin-24, a novel alternatively spliced type II cadherin. J Biol Chem 2003; 278:27513 - 9; http://dx.doi.org/10.1074/jbc.M304119200; PMID: 12734196
  • Shirabe K, Kimura Y, Matsuo N, Fukushima M, Yoshioka H, Tanaka H. MN-cadherin and its novel variant are transiently expressed in chick embryo spinal cord. Biochem Biophys Res Commun 2005; 334:108 - 16; http://dx.doi.org/10.1016/j.bbrc.2005.06.080; PMID: 15992777
  • Lin J, Luo J, Redies C. Molecular cloning and expression analysis of three cadherin-8 isoforms in the embryonic chicken brain. Brain Res 2008; 1201:1 - 14; http://dx.doi.org/10.1016/j.brainres.2008.01.071; PMID: 18336799
  • Sharma S, Lichtenstein A. Aberrant splicing of the E-cadherin transcript is a novel mechanism of gene silencing in chronic lymphocytic leukemia cells. Blood 2009; 114:4179 - 85; http://dx.doi.org/10.1182/blood-2009-03-206482; PMID: 19745069
  • Sharma S, Liao W, Zhou X, Wong DT, Lichtenstein A. Exon 11 skipping of E-cadherin RNA downregulates its expression in head and neck cancer cells. Mol Cancer Ther 2011; 10:1751 - 9; http://dx.doi.org/10.1158/1535-7163.MCT-11-0248; PMID: 21764905
  • Pinheiro H, Carvalho J, Oliveira P, Ferreira D, Pinto MT, Osório H, Licastro D, Bordeira-Carriço R, Jordan P, Lazarevic D, et al. Transcription initiation arising from E-cadherin/CDH1 intron2: a novel protein isoform that increases gastric cancer cell invasion and angiogenesis. Hum Mol Genet 2012; 21:4253 - 69; http://dx.doi.org/10.1093/hmg/dds248; PMID: 22752307
  • Nern A, Nguyen LV, Herman T, Prakash S, Clandinin TR, Zipursky SL. An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. Proc Natl Acad Sci U S A 2005; 102:12944 - 9; http://dx.doi.org/10.1073/pnas.0502888102; PMID: 16123134
  • Yonekura S, Ting CY, Neves G, Hung K, Hsu SN, Chiba A, Chess A, Lee CH. The variable transmembrane domain of Drosophila N-cadherin regulates adhesive activity. Mol Cell Biol 2006; 26:6598 - 608; http://dx.doi.org/10.1128/MCB.00241-06; PMID: 16914742
  • Hsu S-N, Yonekura S, Ting C-Y, Robertson HM, Iwai Y, Uemura T, Lee CH, Chiba A. Conserved alternative splicing and expression patterns of arthropod N-cadherin. PLoS Genet 2009; 5:e1000441; http://dx.doi.org/10.1371/journal.pgen.1000441; PMID: 19343204
  • Koch AW, Farooq A, Shan W, Zeng L, Colman DR, Zhou MM. Structure of the neural (N-) cadherin prodomain reveals a cadherin extracellular domain-like fold without adhesive characteristics. Structure 2004; 12:793 - 805; http://dx.doi.org/10.1016/j.str.2004.02.034; PMID: 15130472
  • Maret D, Gruzglin E, Sadr MS, Siu V, Shan W, Koch AW, Seidah NG, Del Maestro RF, Colman DR. Surface expression of precursor N-cadherin promotes tumor cell invasion. Neoplasia 2010; 12:1066 - 80; PMID: 21170270
  • Reinés A, Bernier LP, McAdam R, Belkaid W, Shan W, Koch AW, Séguéla P, Colman DR, Dhaunchak AS. N-cadherin prodomain processing regulates synaptogenesis. J Neurosci 2012; 32:6323 - 34; http://dx.doi.org/10.1523/JNEUROSCI.0916-12.2012; PMID: 22553038
  • Latefi NS, Pedraza L, Schohl A, Li Z, Ruthazer ES. N-cadherin prodomain cleavage regulates synapse formation in vivo. Dev Neurobiol 2009; 69:518 - 29; http://dx.doi.org/10.1002/dneu.20718; PMID: 19365814
  • Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, Hartmann D, Saftig P. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 2005; 24:742 - 52; http://dx.doi.org/10.1038/sj.emboj.7600548; PMID: 15692570
  • Fortini ME. Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 2002; 3:673 - 84; http://dx.doi.org/10.1038/nrm910; PMID: 12209127
  • Marambaud P, Wen PH, Dutt A, Shioi J, Takashima A, Siman R, Robakis NK. A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 2003; 114:635 - 45; http://dx.doi.org/10.1016/j.cell.2003.08.008; PMID: 13678586
  • Shoval I, Ludwig A, Kalcheim C. Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development 2007; 134:491 - 501; http://dx.doi.org/10.1242/dev.02742; PMID: 17185320
  • Andreyeva A, Nieweg K, Horstmann K, Klapper S, Müller-Schiffmann A, Korth C, Gottmann K. C-terminal fragment of N-cadherin accelerates synapse destabilization by amyloid-β. Brain 2012; 135:2140 - 54; http://dx.doi.org/10.1093/brain/aws120; PMID: 22637581
  • McCusker C, Cousin H, Neuner R, Alfandari D. Extracellular cleavage of cadherin-11 by ADAM metalloproteases is essential for Xenopus cranial neural crest cell migration. Mol Biol Cell 2009; 20:78 - 89; http://dx.doi.org/10.1091/mbc.E08-05-0535; PMID: 18946084
  • Kashef J, Köhler A, Kuriyama S, Alfandari D, Mayor R, Wedlich D. Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases. Genes Dev 2009; 23:1393 - 8; http://dx.doi.org/10.1101/gad.519409; PMID: 19528317
  • Backer S, Hidalgo-Sánchez M, Offner N, Portales-Casamar E, Debant A, Fort P, Gauthier-Rouvière C, Bloch-Gallego E. Trio controls the mature organization of neuronal clusters in the hindbrain. J Neurosci 2007; 27:10323 - 32; http://dx.doi.org/10.1523/JNEUROSCI.1102-07.2007; PMID: 17898204
  • van Rijssel J, van Buul JD. The many faces of the guanine-nucleotide exchange factor trio. Cell Adh Migr 2012; 6:482 - 7; http://dx.doi.org/10.4161/cam.21418; PMID: 23076143
  • Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 2006; 20:3199 - 214; http://dx.doi.org/10.1101/gad.1486806; PMID: 17158740
  • Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691 - 731; http://dx.doi.org/10.1152/physrev.00004.2010; PMID: 21527735
  • Matsumata M, Uchikawa M, Kamachi Y, Kondoh H. Multiple N-cadherin enhancers identified by systematic functional screening indicate its Group B1 SOX-dependent regulation in neural and placodal development. Dev Biol 2005; 286:601 - 17; http://dx.doi.org/10.1016/j.ydbio.2005.08.005; PMID: 16150435
  • Christophorou NA, Mende M, Lleras-Forero L, Grocott T, Streit A. Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear. Dev Biol 2010; 345:180 - 90; http://dx.doi.org/10.1016/j.ydbio.2010.07.007; PMID: 20643116
  • Rousso DL, Pearson CA, Gaber ZB, Miquelajauregui A, Li S, Portera-Cailliau C, Morrisey EE, Novitch BG. Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 2012; 74:314 - 30; http://dx.doi.org/10.1016/j.neuron.2012.02.024; PMID: 22542185
  • Inoue T, Inoue YU, Asami J, Izumi H, Nakamura S, Krumlauf R. Analysis of mouse Cdh6 gene regulation by transgenesis of modified bacterial artificial chromosomes. Dev Biol 2008; 315:506 - 20; http://dx.doi.org/10.1016/j.ydbio.2007.12.011; PMID: 18234175
  • Taneyhill LA, Coles EG, Bronner-Fraser M. Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest. Development 2007; 134:1481 - 90; http://dx.doi.org/10.1242/dev.02834; PMID: 17344227
  • Strobl-Mazzulla PH, Bronner MEA. A PHD12-Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. J Cell Biol 2012; 198:999 - 1010; http://dx.doi.org/10.1083/jcb.201203098; PMID: 22986495
  • Prasad MS, Paulson AF. A combination of enhancer/silencer modules regulates spatially restricted expression of cadherin-7 in neural epithelium. Dev Dyn 2011; 240:1756 - 68; http://dx.doi.org/10.1002/dvdy.22675; PMID: 21674686
  • Ross SE, McCord AE, Jung C, Atan D, Mok SI, Hemberg M, Kim TK, Salogiannis J, Hu L, Cohen S, et al. Bhlhb5 and Prdm8 form a repressor complex involved in neuronal circuit assembly. Neuron 2012; 73:292 - 303; http://dx.doi.org/10.1016/j.neuron.2011.09.035; PMID: 22284184
  • Shimamura K, Takeichi M. Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis. Development 1992; 116:1011 - 9; PMID: 1295725
  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2:76 - 83; http://dx.doi.org/10.1038/35000025; PMID: 10655586
  • Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumor cells. Nat Cell Biol 2000; 2:84 - 9; http://dx.doi.org/10.1038/35000034; PMID: 10655587
  • Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 2004; 48:365 - 75; http://dx.doi.org/10.1387/ijdb.041794hp; PMID: 15349812
  • Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development 2012; 139:3471 - 86; http://dx.doi.org/10.1242/dev.071209; PMID: 22949611
  • Hatta K, Takagi S, Fujisawa H, Takeichi M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 1987; 120:215 - 27; http://dx.doi.org/10.1016/0012-1606(87)90119-9; PMID: 3817290
  • Dady A, Blavet C, Duband JL. Timing and kinetics of E- to N-cadherin switch during neurulation in the avian embryo. Dev Dyn 2012; 241:1333 - 49; http://dx.doi.org/10.1002/dvdy.23813; PMID: 22684994
  • Smith AN, Miller LA, Radice G, Ashery-Padan R, Lang RA. Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis. Development 2009; 136:2977 - 85; http://dx.doi.org/10.1242/dev.037341; PMID: 19666824
  • Rungger-Brändle E, Ripperger JA, Steiner K, Conti A, Stieger A, Soltanieh S, Rungger D. Retinal patterning by Pax6-dependent cell adhesion molecules. Dev Neurobiol 2010; 70:764 - 80; http://dx.doi.org/10.1002/dneu.20816; PMID: 20556827
  • Liu Q, Marrs JA, Chuang JC, Raymond PA. Cadherin-4 expression in the zebrafish central nervous system and regulation by ventral midline signaling. Brain Res Dev Brain Res 2001; 131:17 - 29; http://dx.doi.org/10.1016/S0165-3806(01)00241-3; PMID: 11718832
  • Stoykova A, Fritsch R, Walther C, Gruss P. Forebrain patterning defects in Small eye mutant mice. Development 1996; 122:3453 - 65; PMID: 8951061
  • Andrews GL, Mastick GS. R-cadherin is a Pax6-regulated, growth-promoting cue for pioneer axons. J Neurosci 2003; 23:9873 - 80; PMID: 14586016
  • Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 1997; 181:64 - 78; http://dx.doi.org/10.1006/dbio.1996.8443; PMID: 9015265
  • Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, Wilson SW, Hammerschmidt M, Bally-Cuif L. parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 2002; 129:3281 - 94; PMID: 12091300
  • Kadowaki M, Nakamura S, Machon O, Krauss S, Radice GL, Takeichi M. N-cadherin mediates cortical organization in the mouse brain. Dev Biol 2007; 304:22 - 33; http://dx.doi.org/10.1016/j.ydbio.2006.12.014; PMID: 17222817
  • Gänzler-Odenthal SI, Redies C. Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci 1998; 18:5415 - 25; PMID: 9651223
  • Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M. Cadherin regulates dendritic spine morphogenesis. Neuron 2002; 35:77 - 89; http://dx.doi.org/10.1016/S0896-6273(02)00748-1; PMID: 12123610
  • Masai I, Lele Z, Yamaguchi M, Komori A, Nakata A, Nishiwaki Y, Wada H, Tanaka H, Nojima Y, Hammerschmidt M, et al. N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 2003; 130:2479 - 94; http://dx.doi.org/10.1242/dev.00465; PMID: 12702661
  • Kasemeier-Kulesa JC, Bradley R, Pasquale EB, Lefcort F, Kulesa PM. Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development 2006; 133:4839 - 47; http://dx.doi.org/10.1242/dev.02662; PMID: 17108003
  • Bekirov IH, Nagy V, Svoronos A, Huntley GW, Benson DL. Cadherin-8 and N-cadherin differentially regulate pre- and postsynaptic development of the hippocampal mossy fiber pathway. Hippocampus 2008; 18:349 - 63; http://dx.doi.org/10.1002/hipo.20395; PMID: 18064706
  • Taniguchi H, Kawauchi D, Nishida K, Murakami F. Classic cadherins regulate tangential migration of precerebellar neurons in the caudal hindbrain. Development 2006; 133:1923 - 31; http://dx.doi.org/10.1242/dev.02354; PMID: 16611692
  • Rieger S, Senghaas N, Walch A, Köster RW. Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol 2009; 7:e1000240; http://dx.doi.org/10.1371/journal.pbio.1000240; PMID: 19901980
  • Stockinger P, Maître JL, Heisenberg CP. Defective neuroepithelial cell cohesion affects tangential branchiomotor neuron migration in the zebrafish neural tube. Development 2011; 138:4673 - 83; http://dx.doi.org/10.1242/dev.071233; PMID: 21965614
  • Camand E, Peglion F, Osmani N, Sanson M, Etienne-Manneville S. N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J Cell Sci 2012; 125:844 - 57; http://dx.doi.org/10.1242/jcs.087668; PMID: 22275437
  • Gärtner A, Fornasiero EF, Munck S, Vennekens K, Seuntjens E, Huttner WB, Valtorta F, Dotti CG. N-cadherin specifies first asymmetry in developing neurons. EMBO J 2012; 31:1893 - 903; http://dx.doi.org/10.1038/emboj.2012.41; PMID: 22354041
  • Seki T, Namba T, Mochizuki H, Onodera M. Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus. J Comp Neurol 2007; 502:275 - 90; http://dx.doi.org/10.1002/cne.21301; PMID: 17348003
  • Yagita Y, Sakurai T, Tanaka H, Kitagawa K, Colman DR, Shan W. N-cadherin mediates interaction between precursor cells in the subventricular zone and regulates further differentiation. J Neurosci Res 2009; 87:3331 - 42; http://dx.doi.org/10.1002/jnr.22044; PMID: 19301425
  • Zhang J, Woodhead GJ, Swaminathan SK, Noles SR, McQuinn ER, Pisarek AJ, Stocker AM, Mutch CA, Funatsu N, Chenn A. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell 2010; 18:472 - 9; http://dx.doi.org/10.1016/j.devcel.2009.12.025; PMID: 20230753
  • Barami K, Kirschenbaum B, Lemmon V, Goldman SA. N-cadherin and Ng-CAM/8D9 are involved serially in the migration of newly generated neurons into the adult songbird brain. Neuron 1994; 13:567 - 82; http://dx.doi.org/10.1016/0896-6273(94)90026-4; PMID: 7522481
  • McKeown SJ, Wallace AS, Anderson RB. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2013; 373:244 - 57; http://dx.doi.org/10.1016/j.ydbio.2012.10.028; PMID: 23123967
  • Taneyhill LA, Schiffmacher AT. Cadherin dynamics during neural crest cell ontogeny. Prog Mol Biol Transl Sci 2013; 116:291 - 315; http://dx.doi.org/10.1016/B978-0-12-394311-8.00013-3; PMID: 23481200
  • Price SR. Cell adhesion and migration in the organization of spinal motor neurons. Cell Adh Migr 2012; 6:385 - 9; http://dx.doi.org/10.4161/cam.21044; PMID: 22902765
  • Inoue T, Chisaka O, Matsunami H, Takeichi M. Cadherin-6 expression transiently delineates specific rhombomeres, other neural tube subdivisions, and neural crest subpopulations in mouse embryos. Dev Biol 1997; 183:183 - 94; http://dx.doi.org/10.1006/dbio.1996.8501; PMID: 9126293
  • Nakagawa S, Takeichi M. Neural crest emigration from the neural tube depends on regulated cadherin expression. Development 1998; 125:2963 - 71; PMID: 9655818
  • Liu JP, Jessell TM. A role for rhoB in the delamination of neural crest cells from the dorsal neural tube. Development 1998; 125:5055 - 67; PMID: 9811589
  • Sela-Donenfeld D, Kalcheim C. Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development 1999; 126:4749 - 62; PMID: 10518492
  • Taneyhill LA, Bronner-Fraser M. Dynamic alterations in gene expression after Wnt-mediated induction of avian neural crest. Mol Biol Cell 2005; 16:5283 - 93; http://dx.doi.org/10.1091/mbc.E05-03-0210; PMID: 16135532
  • Park KS, Gumbiner BM. Cadherin 6B induces BMP signaling and de-epithelialization during the epithelial mesenchymal transition of the neural crest. Development 2010; 137:2691 - 701; http://dx.doi.org/10.1242/dev.050096; PMID: 20610481
  • Hadeball B, Borchers A, Wedlich D. Xenopus cadherin-11 (Xcadherin-11) expression requires the Wg/Wnt signal. Mech Dev 1998; 72:101 - 13; http://dx.doi.org/10.1016/S0925-4773(98)00022-7; PMID: 9533956
  • Vallin J, Girault JM, Thiery JP, Broders F. Xenopus cadherin-11 is expressed in different populations of migrating neural crest cells. Mech Dev 1998; 75:171 - 4; http://dx.doi.org/10.1016/S0925-4773(98)00099-9; PMID: 9739138
  • Chalpe AJ, Prasad M, Henke AJ, Paulson AF. Regulation of cadherin expression in the chicken neural crest by the Wnt/β-catenin signaling pathway. Cell Adh Migr 2010; 4:431 - 8; http://dx.doi.org/10.4161/cam.4.3.12138; PMID: 20523111
  • Takahashi M, Osumi N. Identification of a novel type II classical cadherin: rat cadherin19 is expressed in the cranial ganglia and Schwann cell precursors during development. Dev Dyn 2005; 232:200 - 8; http://dx.doi.org/10.1002/dvdy.20209; PMID: 15580626
  • Lin J, Luo J, Redies C. Cadherin-19 expression is restricted to myelin-forming cells in the chicken embryo. Neuroscience 2010; 165:168 - 78; http://dx.doi.org/10.1016/j.neuroscience.2009.10.032; PMID: 19850111
  • Ju MJ, Aroca P, Luo J, Puelles L, Redies C. Molecular profiling indicates avian branchiomotor nuclei invade the hindbrain alar plate. Neuroscience 2004; 128:785 - 96; http://dx.doi.org/10.1016/j.neuroscience.2004.06.063; PMID: 15464286
  • Price SR, De Marco Garcia NV, Ranscht B, Jessell TM. Regulation of motor neuron pool sorting by differential expression of type II cadherins. Cell 2002; 109:205 - 16; http://dx.doi.org/10.1016/S0092-8674(02)00695-5; PMID: 12007407
  • Marthiens V, Padilla F, Lambert M, Mege RM. Complementary expression and regulation of cadherins 6 and 11 during specific steps of motoneuron differentiation. Mol Cell Neurosci 2002; 20:458 - 75; http://dx.doi.org/10.1006/mcne.2002.1130; PMID: 12139922
  • Barnes SH, Price SR, Wentzel C, Guthrie SC. Cadherin-7 and cadherin-6B differentially regulate the growth, branching and guidance of cranial motor axons. Development 2010; 137:805 - 14; http://dx.doi.org/10.1242/dev.042457; PMID: 20147381
  • Inoue T, Tanaka T, Suzuki SC, Takeichi M. Cadherin-6 in the developing mouse brain: expression along restricted connection systems and synaptic localization suggest a potential role in neuronal circuitry. Dev Dyn 1998; 211:338 - 51; http://dx.doi.org/10.1002/(SICI)1097-0177(199804)211:4<338::AID-AJA5>3.0.CO;2-I; PMID: 9566953
  • Bello SM, Millo H, Rajebhosale M, Price SR. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons. J Neurosci 2012; 32:490 - 505; http://dx.doi.org/10.1523/JNEUROSCI.4382-11.2012; PMID: 22238085
  • Franklin JI, Sargent TD. Ventral neural cadherin, a novel cadherin expressed in a subset of neural tissues in the zebrafish embryo. Dev Dyn 1996; 206:121 - 30; http://dx.doi.org/10.1002/(SICI)1097-0177(199606)206:2<121::AID-AJA1>3.0.CO;2-K; PMID: 8725279
  • Kimura Y, Matsunami H, Takeichi M. Expression of cadherin-11 delineates boundaries, neuromeres, and nuclei in the developing mouse brain. Dev Dyn 1996; 206:455 - 62; http://dx.doi.org/10.1002/(SICI)1097-0177(199608)206:4<455::AID-AJA11>3.0.CO;2-W; PMID: 8853994
  • Suzuki SC, Inoue T, Kimura Y, Tanaka T, Takeichi M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol Cell Neurosci 1997; 9:433 - 47; http://dx.doi.org/10.1006/mcne.1997.0626; PMID: 9361280
  • Simonneau L, Thiery JP. The mesenchymal cadherin-11 is expressed in restricted sites during the ontogeny of the rat brain in modes suggesting novel functions. Cell Adhes Commun 1998; 6:431 - 50; http://dx.doi.org/10.3109/15419069809109151; PMID: 10223358
  • Luo J, Ju MJ, Lin J, Yan X, Markus A, Mix E, Rolfs A, Redies C. Cadherin-20 expression by motor neurons is regulated by Sonic hedgehog during spinal cord development. Neuroreport 2009; 20:365 - 70; http://dx.doi.org/10.1097/WNR.0b013e3283243fe4; PMID: 19218874
  • Fairchild CL, Gammill LS. Tetraspanin18 is a FoxD3-responsive antagonist of cranial neural crest epithelial-to-mesenchymal transition that maintains cadherin-6B protein. J Cell Sci 2013; 126:1464 - 76; http://dx.doi.org/10.1242/jcs.120915; PMID: 23418345
  • Prasad MS, Sauka-Spengler T, LaBonne C. Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Dev Biol 2012; 366:10 - 21; http://dx.doi.org/10.1016/j.ydbio.2012.03.014; PMID: 22583479
  • Dottori M, Gross MK, Labosky P, Goulding M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 2001; 128:4127 - 38; PMID: 11684651
  • Cheung M, Briscoe J. Neural crest development is regulated by the transcription factor Sox9. Development 2003; 130:5681 - 93; http://dx.doi.org/10.1242/dev.00808; PMID: 14522876
  • McKeown SJ, Lee VM, Bronner-Fraser M, Newgreen DF, Farlie PG. Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn 2005; 233:430 - 44; http://dx.doi.org/10.1002/dvdy.20341; PMID: 15768395
  • Matsunaga E, Okanoya K. Expression analysis of cadherins in the songbird brain: relationship to vocal system development. J Comp Neurol 2008; 508:329 - 42; http://dx.doi.org/10.1002/cne.21676; PMID: 18322922
  • Matsunaga E, Suzuki K, Kato S, Kurotani T, Kobayashi K, Okanoya K. Dynamic expression of cadherins regulates vocal development in a songbird. PLoS One 2011; 6:e25272; http://dx.doi.org/10.1371/journal.pone.0025272; PMID: 21949888
  • Le Dréau G, Martí E. Dorsal-ventral patterning of the neural tube: a tale of three signals. Dev Neurobiol 2012; 72:1471 - 81; http://dx.doi.org/10.1002/dneu.22015; PMID: 22821665
  • Luo J, Ju MJ, Redies C. Regionalized cadherin-7 expression by radial glia is regulated by Shh and Pax7 during chicken spinal cord development. Neuroscience 2006; 142:1133 - 43; http://dx.doi.org/10.1016/j.neuroscience.2006.07.038; PMID: 16973294
  • Stamataki D, Ulloa F, Tsoni SV, Mynett A, Briscoe J. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev 2005; 19:626 - 41; http://dx.doi.org/10.1101/gad.325905; PMID: 15741323
  • Takahashi M, Osumi N. Expression study of cadherin7 and cadherin20 in the embryonic and adult rat central nervous system. BMC Dev Biol 2008; 8:87; http://dx.doi.org/10.1186/1471-213X-8-87; PMID: 18801203
  • Flaherty KD, Paulson AF, Adamson AL, Wiens DJ. Expression of Cadherin-11 during Organogenesis in the Chick Embryo. Int J Biol 2012; 4:36 - 48; http://dx.doi.org/10.5539/ijb.v4n1p36
  • Lee MP, Yutzey KE. Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. PLoS One 2011; 6:e29758; http://dx.doi.org/10.1371/journal.pone.0029758; PMID: 22242143
  • McKeown SJ, Newgreen DF, Farlie PG. Dlx2 over-expression regulates cell adhesion and mesenchymal condensation in ectomesenchyme. Dev Biol 2005; 281:22 - 37; http://dx.doi.org/10.1016/j.ydbio.2005.02.004; PMID: 15848386
  • Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 2004; 23:1739 - 48; http://dx.doi.org/10.1038/sj.emboj.7600136; PMID: 15057284
  • Saglietti L, Dequidt C, Kamieniarz K, Rousset MC, Valnegri P, Thoumine O, Beretta F, Fagni L, Choquet D, Sala C, et al. Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron 2007; 54:461 - 77; http://dx.doi.org/10.1016/j.neuron.2007.04.012; PMID: 17481398
  • Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 2000; 3:661 - 9; http://dx.doi.org/10.1038/76615; PMID: 10862698
  • Biswas S, Emond MR, Jontes JD. Protocadherin-19 and N-cadherin interact to control cell movements during anterior neurulation. J Cell Biol 2010; 191:1029 - 41; http://dx.doi.org/10.1083/jcb.201007008; PMID: 21115806
  • Emond MR, Biswas S, Blevins CJ, Jontes JD. A complex of Protocadherin-19 and N-cadherin mediates a novel mechanism of cell adhesion. J Cell Biol 2011; 195:1115 - 21; http://dx.doi.org/10.1083/jcb.201108115; PMID: 22184198
  • Cheung M, Chaboissier MC, Mynett A, Hirst E, Schedl A, Briscoe J. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 2005; 8:179 - 92; http://dx.doi.org/10.1016/j.devcel.2004.12.010; PMID: 15691760
  • King MW, Ndiema M, Neff AW. Anterior structural defects by misexpression of Xgbx-2 in early Xenopus embryos are associated with altered expression of cell adhesion molecules. Dev Dyn 1998; 212:563 - 79; http://dx.doi.org/10.1002/(SICI)1097-0177(199808)212:4<563::AID-AJA9>3.0.CO;2-F; PMID: 9707329
  • Milet C, Maczkowiak F, Roche DD, Monsoro-Burq AH. Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos. Proc Natl Acad Sci U S A 2013; 110:5528 - 33; http://dx.doi.org/10.1073/pnas.1219124110; PMID: 23509273
  • Monks DA, Getsios S, MacCalman CD, Watson NV. N-cadherin is regulated by gonadal steroids in adult sexually dimorphic spinal motoneurons. J Neurobiol 2001; 47:255 - 64; http://dx.doi.org/10.1002/neu.1033; PMID: 11351337
  • Monks DA, Getsios S, MacCalman CD, Watson NV. N-cadherin is regulated by gonadal steroids in the adult hippocampus. Proc Natl Acad Sci U S A 2001; 98:1312 - 6; http://dx.doi.org/10.1073/pnas.98.3.1312; PMID: 11158636
  • Stoykova A, Götz M, Gruss P, Price J. Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 1997; 124:3765 - 77; PMID: 9367432
  • Burstyn-Cohen T, Stanleigh J, Sela-Donenfeld D, Kalcheim C. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 2004; 131:5327 - 39; http://dx.doi.org/10.1242/dev.01424; PMID: 15456730