1,815
Views
23
CrossRef citations to date
0
Altmetric
Review

Phosphorylation-mediated regulation of GEFs for RhoA

&
Pages 11-18 | Received 10 Jan 2014, Accepted 30 Jan 2014, Published online: 01 Jan 2013

References

  • Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70:389 - 99; http://dx.doi.org/10.1016/0092-8674(92)90163-7; PMID: 1643657
  • Burridge K, Wennerberg K. Rho and Rac take center stage. Cell 2004; 116:167 - 79; http://dx.doi.org/10.1016/S0092-8674(04)00003-0; PMID: 14744429
  • Pertz O, Hodgson L, Klemke RL, Hahn KM. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006; 440:1069 - 72; http://dx.doi.org/10.1038/nature04665; PMID: 16547516
  • Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G. Coordination of Rho GTPase activities during cell protrusion. Nature 2009; 461:99 - 103; http://dx.doi.org/10.1038/nature08242; PMID: 19693013
  • Itoh M, Tsukita S, Yamazaki Y, Sugimoto H. Rho GTP exchange factor ARHGEF11 regulates the integrity of epithelial junctions by connecting ZO-1 and RhoA-myosin II signaling. Proc Natl Acad Sci U S A 2012; 109:9905 - 10; http://dx.doi.org/10.1073/pnas.1115063109; PMID: 22665792
  • Ngok SP, Geyer R, Liu M, Kourtidis A, Agrawal S, Wu C, Seerapu HR, Lewis-Tuffin LJ, Moodie KL, Huveldt D, et al. VEGF and Angiopoietin-1 exert opposing effects on cell junctions by regulating the Rho GEF Syx. J Cell Biol 2012; 199:1103 - 15; http://dx.doi.org/10.1083/jcb.201207009; PMID: 23253477
  • Gamblin SJ, Smerdon SJ. GTPase-activating proteins and their complexes. Curr Opin Struct Biol 1998; 8:195 - 201; http://dx.doi.org/10.1016/S0959-440X(98)80038-9; PMID: 9631293
  • Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 1999; 11:545 - 54; http://dx.doi.org/10.1016/S0898-6568(98)00063-1; PMID: 10433515
  • Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 2002; 16:1587 - 609; http://dx.doi.org/10.1101/gad.1003302; PMID: 12101119
  • Liu X, Wang H, Eberstadt M, Schnuchel A, Olejniczak ET, Meadows RP, Schkeryantz JM, Janowick DA, Harlan JE, Harris EAS, et al. NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell 1998; 95:269 - 77; http://dx.doi.org/10.1016/S0092-8674(00)81757-2; PMID: 9790533
  • Kristelly R, Gao G, Tesmer JJG. Structural determinants of RhoA binding and nucleotide exchange in leukemia-associated Rho guanine-nucleotide exchange factor. J Biol Chem 2004; 279:47352 - 62; http://dx.doi.org/10.1074/jbc.M406056200; PMID: 15331592
  • Derewenda U, Oleksy A, Stevenson AS, Korczynska J, Dauter Z, Somlyo AP, Otlewski J, Somlyo AV, Derewenda ZS. The crystal structure of RhoA in complex with the DH/PH fragment of PDZRhoGEF, an activator of the Ca(2+) sensitization pathway in smooth muscle. Structure 2004; 12:1955 - 65; http://dx.doi.org/10.1016/j.str.2004.09.003; PMID: 15530360
  • Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 1997; 385:169 - 72; http://dx.doi.org/10.1038/385169a0; PMID: 8990121
  • Heo J, Thapar R, Campbell SL. Recognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factors. Biochemistry 2005; 44:6573 - 85; http://dx.doi.org/10.1021/bi047443q; PMID: 15850391
  • Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL, Burridge K, Der CJ. Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 2000; 275:10141 - 9; http://dx.doi.org/10.1074/jbc.275.14.10141; PMID: 10744696
  • Liu BP, Burridge K. Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not β1 integrins. Mol Cell Biol 2000; 20:7160 - 9; http://dx.doi.org/10.1128/MCB.20.19.7160-7169.2000; PMID: 10982832
  • Palmby TR, Abe K, Karnoub AE, Der CJ. Vav transformation requires activation of multiple GTPases and regulation of gene expression. Mol Cancer Res 2004; 2:702 - 11; PMID: 15634759
  • Tybulewicz VLJ. Vav-family proteins in T-cell signalling. Curr Opin Immunol 2005; 17:267 - 74; http://dx.doi.org/10.1016/j.coi.2005.04.003; PMID: 15886116
  • Hall AB, Gakidis MAM, Glogauer M, Wilsbacher JL, Gao S, Swat W, Brugge JS. Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcgammaR- and complement-mediated phagocytosis. Immunity 2006; 24:305 - 16; http://dx.doi.org/10.1016/j.immuni.2006.02.005; PMID: 16546099
  • Utomo A, Cullere X, Glogauer M, Swat W, Mayadas TN. Vav proteins in neutrophils are required for FcgammaR-mediated signaling to Rac GTPases and nicotinamide adenine dinucleotide phosphate oxidase component p40(phox). J Immunol 2006; 177:6388 - 97; PMID: 17056570
  • Dong Z, Liu Y, Lu S, Wang A, Lee K, Wang L-H, Revelo M, Lu S. Vav3 oncogene is overexpressed and regulates cell growth and androgen receptor activity in human prostate cancer. Mol Endocrinol 2006; 20:2315 - 25; http://dx.doi.org/10.1210/me.2006-0048; PMID: 16762975
  • Razidlo GL, Wang Y, Chen J, Krueger EW, Billadeau DD, McNiven MA. Dynamin 2 potentiates invasive migration of pancreatic tumor cells through stabilization of the Rac1 GEF Vav1. Dev Cell 2013; 24:573 - 85; http://dx.doi.org/10.1016/j.devcel.2013.02.010; PMID: 23537630
  • Hernández-Varas P, Coló GP, Bartolomé RA, Paterson A, Medraño-Fernández I, Arellano-Sánchez N, Cabañas C, Sánchez-Mateos P, Lafuente EM, Boussiotis VA, et al. Rap1-GTP-interacting adaptor molecule (RIAM) protein controls invasion and growth of melanoma cells. J Biol Chem 2011; 286:18492 - 504; http://dx.doi.org/10.1074/jbc.M110.189811; PMID: 21454517
  • Molli PR, Adam L, Kumar R. Therapeutic IMC-C225 antibody inhibits breast cancer cell invasiveness via Vav2-dependent activation of RhoA GTPase. Clin Cancer Res 2008; 14:6161 - 70; http://dx.doi.org/10.1158/1078-0432.CCR-07-5288; PMID: 18829495
  • Papadimitriou E, Kardassis D, Moustakas A, Stournaras C. TGFβ-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2. Cell Physiol Biochem 2011; 28:229 - 38; http://dx.doi.org/10.1159/000331734; PMID: 21865730
  • Thalappilly S, Soubeyran P, Iovanna JL, Dusetti NJ. VAV2 regulates epidermal growth factor receptor endocytosis and degradation. Oncogene 2010; 29:2528 - 39; http://dx.doi.org/10.1038/onc.2010.1; PMID: 20140013
  • Peng F, Zhang B, Ingram AJ, Gao B, Zhang Y, Krepinsky JC. Mechanical stretch-induced RhoA activation is mediated by the RhoGEF Vav2 in mesangial cells. Cell Signal 2010; 22:34 - 40; http://dx.doi.org/10.1016/j.cellsig.2009.09.003; PMID: 19755152
  • Yu B, Martins IRS, Li P, Amarasinghe GK, Umetani J, Fernandez-Zapico ME, Billadeau DD, Machius M, Tomchick DR, Rosen MK. Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Cell 2010; 140:246 - 56; http://dx.doi.org/10.1016/j.cell.2009.12.033; PMID: 20141838
  • Aghazadeh B, Lowry WE, Huang X-Y, Rosen MK. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 2000; 102:625 - 33; http://dx.doi.org/10.1016/S0092-8674(00)00085-4; PMID: 11007481
  • Sastry SK, Rajfur Z, Liu BP, Cote J-F, Tremblay ML, Burridge K. PTP-PEST couples membrane protrusion and tail retraction via VAV2 and p190RhoGAP. J Biol Chem 2006; 281:11627 - 36; http://dx.doi.org/10.1074/jbc.M600897200; PMID: 16513648
  • Wu J, Katrekar A, Honigberg LA, Smith AM, Conn MT, Tang J, Jeffery D, Mortara K, Sampang J, Williams SR, et al. Identification of substrates of human protein-tyrosine phosphatase PTPN22. J Biol Chem 2006; 281:11002 - 10; http://dx.doi.org/10.1074/jbc.M600498200; PMID: 16461343
  • Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol 2003; 23:6291 - 9; http://dx.doi.org/10.1128/MCB.23.17.6291-6299.2003; PMID: 12917349
  • Kozasa T, Hajicek N, Chow CR, Suzuki N. Signalling mechanisms of RhoGTPase regulation by the heterotrimeric G proteins G12 and G13. J Biochem 2011; 150:357 - 69; http://dx.doi.org/10.1093/jb/mvr105; PMID: 21873336
  • Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 1998; 280:2112 - 4; http://dx.doi.org/10.1126/science.280.5372.2112; PMID: 9641916
  • Hajicek N, Kukimoto-Niino M, Mishima-Tsumagari C, Chow CR, Shirouzu M, Terada T, Patel M, Yokoyama S, Kozasa T. Identification of critical residues in G(α)13 for stimulation of p115RhoGEF activity and the structure of the G(α)13-p115RhoGEF regulator of G protein signaling homology (RH) domain complex. J Biol Chem 2011; 286:20625 - 36; http://dx.doi.org/10.1074/jbc.M110.201392; PMID: 21507947
  • Chen Z, Singer WD, Danesh SM, Sternweis PC, Sprang SR. Recognition of the activated states of Galpha13 by the rgRGS domain of PDZRhoGEF. Structure 2008; 16:1532 - 43; http://dx.doi.org/10.1016/j.str.2008.07.009; PMID: 18940608
  • Suzuki N, Nakamura S, Mano H, Kozasa T. Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF. Proc Natl Acad Sci U S A 2003; 100:733 - 8; http://dx.doi.org/10.1073/pnas.0234057100; PMID: 12515866
  • Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 1999; 274:5868 - 79; http://dx.doi.org/10.1074/jbc.274.9.5868; PMID: 10026210
  • Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 1998; 280:2109 - 11; http://dx.doi.org/10.1126/science.280.5372.2109; PMID: 9641915
  • Guilluy C, Brégeon J, Toumaniantz G, Rolli-Derkinderen M, Retailleau K, Loufrani L, Henrion D, Scalbert E, Bril A, Torres RM, et al. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med 2010; 16:183 - 90; http://dx.doi.org/10.1038/nm.2079; PMID: 20098430
  • Gadepalli R, Kotla S, Heckle MR, Verma SK, Singh NK, Rao GN. Novel role for p21-activated kinase 2 in thrombin-induced monocyte migration. J Biol Chem 2013; 288:30815 - 31; http://dx.doi.org/10.1074/jbc.M113.463414; PMID: 24025335
  • Gadepalli R, Singh NK, Kundumani-Sridharan V, Heckle MR, Rao GN. Novel role of proline-rich nonreceptor tyrosine kinase 2 in vascular wall remodeling after balloon injury. Arterioscler Thromb Vasc Biol 2012; 32:2652 - 61; http://dx.doi.org/10.1161/ATVBAHA.112.253112; PMID: 22922962
  • Chikumi H, Fukuhara S, Gutkind JS. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase. J Biol Chem 2002; 277:12463 - 73; http://dx.doi.org/10.1074/jbc.M108504200; PMID: 11799111
  • Chikumi H, Barac A, Behbahani B, Gao Y, Teramoto H, Zheng Y, Gutkind JS. Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 2004; 23:233 - 40; http://dx.doi.org/10.1038/sj.onc.1207012; PMID: 14712228
  • Artamonov MV, Momotani K, Stevenson A, Trentham DR, Derewenda U, Derewenda ZS, Read PW, Gutkind JS, Somlyo AV. Agonist-induced Ca2+ sensitization in smooth muscle: redundancy of Rho guanine nucleotide exchange factors (RhoGEFs) and response kinetics, a caged compound study. J Biol Chem 2013; 288:34030 - 40; http://dx.doi.org/10.1074/jbc.M113.514596; PMID: 24106280
  • Iwanicki MP, Vomastek T, Tilghman RW, Martin KH, Banerjee J, Wedegaertner PB, Parsons JT. FAK, PDZ-RhoGEF and ROCKII cooperate to regulate adhesion movement and trailing-edge retraction in fibroblasts. J Cell Sci 2008; 121:895 - 905; http://dx.doi.org/10.1242/jcs.020941; PMID: 18303050
  • Zheng R, Iwase A, Shen R, Goodman OB Jr., Sugimoto N, Takuwa Y, Lerner DJ, Nanus DM. Neuropeptide-stimulated cell migration in prostate cancer cells is mediated by RhoA kinase signaling and inhibited by neutral endopeptidase. Oncogene 2006; 25:5942 - 52; http://dx.doi.org/10.1038/sj.onc.1209586; PMID: 16652149
  • Ying Z, Giachini FRC, Tostes RC, Webb RC. PYK2/PDZ-RhoGEF links Ca2+ signaling to RhoA. Arterioscler Thromb Vasc Biol 2009; 29:1657 - 63; http://dx.doi.org/10.1161/ATVBAHA.109.190892; PMID: 19759375
  • Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S, Takuwa Y, Sasaki T, Rothstein JD, Suzuki H, et al. Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol 2005; 25:1831 - 6; http://dx.doi.org/10.1161/01.ATV.0000175749.41799.9b; PMID: 15994438
  • Guilluy C, Swaminathan V, Garcia-Mata R, O’Brien ET, Superfine R, Burridge K. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol 2011; 13:722 - 7; http://dx.doi.org/10.1038/ncb2254; PMID: 21572419
  • Gebbink MFBG, Kranenburg O, Poland M, van Horck FP, Houssa B, Moolenaar WH. Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J Cell Biol 1997; 137:1603 - 13; http://dx.doi.org/10.1083/jcb.137.7.1603; PMID: 9199174
  • van Horck FPG, Ahmadian MR, Haeusler LC, Moolenaar WH, Kranenburg O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J Biol Chem 2001; 276:4948 - 56; http://dx.doi.org/10.1074/jbc.M003839200; PMID: 11058585
  • Zhai J, Lin H, Nie Z, Wu J, Cañete-Soler R, Schlaepfer WW, Schlaepfer DD. Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem 2003; 278:24865 - 73; http://dx.doi.org/10.1074/jbc.M302381200; PMID: 12702722
  • Lim Y, Lim S-T, Tomar A, Gardel M, Bernard-Trifilo JA, Chen XL, Uryu SA, Canete-Soler R, Zhai J, Lin H, et al. PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J Cell Biol 2008; 180:187 - 203; http://dx.doi.org/10.1083/jcb.200708194; PMID: 18195107
  • Yu H-G, Nam J-O, Miller NLG, Tanjoni I, Walsh C, Shi L, Kim L, Chen XL, Tomar A, Lim S-T, et al. p190RhoGEF (Rgnef) promotes colon carcinoma tumor progression via interaction with focal adhesion kinase. Cancer Res 2011; 71:360 - 70; http://dx.doi.org/10.1158/0008-5472.CAN-10-2894; PMID: 21224360
  • Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J. A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 2011; 21:635 - 44; http://dx.doi.org/10.1016/j.cub.2011.03.039; PMID: 21474314
  • Bravo-Cordero JJ, Sharma VP, Roh-Johnson M, Chen X, Eddy R, Condeelis J, Hodgson L. Spatial regulation of RhoC activity defines protrusion formation in migrating cells. J Cell Sci 2013; 126:3356 - 69; http://dx.doi.org/10.1242/jcs.123547; PMID: 23704350
  • Nalbant P, Chang Y-C, Birkenfeld J, Chang Z-F, Bokoch GM. Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Mol Biol Cell 2009; 20:4070 - 82; http://dx.doi.org/10.1091/mbc.E09-01-0041; PMID: 19625450
  • Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 1998; 273:34954 - 60; http://dx.doi.org/10.1074/jbc.273.52.34954; PMID: 9857026
  • Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 2002; 4:294 - 301; http://dx.doi.org/10.1038/ncb773; PMID: 11912491
  • Fujishiro SH, Tanimura S, Mure S, Kashimoto Y, Watanabe K, Kohno M. ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA. Biochem Biophys Res Commun 2008; 368:162 - 7; http://dx.doi.org/10.1016/j.bbrc.2008.01.066; PMID: 18211802
  • Kakiashvili E, Speight P, Waheed F, Seth R, Lodyga M, Tanimura S, Kohno M, Rotstein OD, Kapus A, Szászi K. GEF-H1 mediates tumor necrosis factor-α-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J Biol Chem 2009; 284:11454 - 66; http://dx.doi.org/10.1074/jbc.M805933200; PMID: 19261619
  • von Thun A, Preisinger C, Rath O, Schwarz JP, Ward C, Monsefi N, Rodríguez J, Garcia-Munoz A, Birtwistle M, Bienvenut W, et al. Extracellular signal-regulated kinase regulates RhoA activation and tumor cell plasticity by inhibiting guanine exchange factor H1 activity. Mol Cell Biol 2013; 33:4526 - 37; http://dx.doi.org/10.1128/MCB.00585-13; PMID: 24043311
  • Zenke FT, Krendel M, DerMardirossian C, King CC, Bohl BP, Bokoch GM. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J Biol Chem 2004; 279:18392 - 400; http://dx.doi.org/10.1074/jbc.M400084200; PMID: 14970201
  • Birkenfeld J, Nalbant P, Bohl BP, Pertz O, Hahn KM, Bokoch GM. GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell 2007; 12:699 - 712; http://dx.doi.org/10.1016/j.devcel.2007.03.014; PMID: 17488622
  • Yamahashi Y, Saito Y, Murata-Kamiya N, Hatakeyama M. Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization. J Biol Chem 2011; 286:44576 - 84; http://dx.doi.org/10.1074/jbc.M111.267021; PMID: 22072711
  • Qin H, Carr HS, Wu X, Muallem D, Tran NH, Frost JA. Characterization of the biochemical and transforming properties of the neuroepithelial transforming protein 1. J Biol Chem 2005; 280:7603 - 13; http://dx.doi.org/10.1074/jbc.M412141200; PMID: 15611121
  • Schmidt A, Hall A. The Rho exchange factor Net1 is regulated by nuclear sequestration. J Biol Chem 2002; 277:14581 - 8; http://dx.doi.org/10.1074/jbc.M111108200; PMID: 11839749
  • Carr HS, Zuo Y, Oh W, Frost JA. Regulation of focal adhesion kinase activation, breast cancer cell motility, and amoeboid invasion by the RhoA guanine nucleotide exchange factor Net1. Mol Cell Biol 2013; 33:2773 - 86; http://dx.doi.org/10.1128/MCB.00175-13; PMID: 23689132
  • Alberts AS, Qin H, Carr HS, Frost JA. PAK1 negatively regulates the activity of the Rho exchange factor NET1. J Biol Chem 2005; 280:12152 - 61; http://dx.doi.org/10.1074/jbc.M405073200; PMID: 15684429
  • De Toledo M, Coulon V, Schmidt S, Fort P, Blangy A. The gene for a new brain specific RhoA exchange factor maps to the highly unstable chromosomal region 1p36.2-1p36.3. Oncogene 2001; 20:7307 - 17; http://dx.doi.org/10.1038/sj.onc.1204921; PMID: 11704860
  • Ernkvist M, Luna Persson N, Audebert S, Lecine P, Sinha I, Liu M, Schlueter M, Horowitz A, Aase K, Weide T, et al. The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood 2009; 113:244 - 53; http://dx.doi.org/10.1182/blood-2008-04-153874; PMID: 18824598
  • Garnaas MK, Moodie KL, Liu ML, Samant GV, Li K, Marx R, Baraban JM, Horowitz A, Ramchandran R. Syx, a RhoA guanine exchange factor, is essential for angiogenesis in Vivo. Circ Res 2008; 103:710 - 6; http://dx.doi.org/10.1161/CIRCRESAHA.108.181388; PMID: 18757825
  • Dachsel JC, Ngok SP, Lewis-Tuffin LJ, Kourtidis A, Geyer R, Johnston L, Feathers R, Anastasiadis PZ. The Rho guanine nucleotide exchange factor Syx regulates the balance of dia and ROCK activities to promote polarized-cancer-cell migration. Mol Cell Biol 2013; 33:4909 - 18; http://dx.doi.org/10.1128/MCB.00565-13; PMID: 24126053
  • Liu M, Horowitz A. A PDZ-binding motif as a critical determinant of Rho guanine exchange factor function and cell phenotype. Mol Biol Cell 2006; 17:1880 - 7; http://dx.doi.org/10.1091/mbc.E06-01-0002; PMID: 16467373
  • Ngok SP, Geyer R, Kourtidis A, Storz P, Anastasiadis PZ. Phosphorylation-mediated 14-3-3 protein binding regulates the function of the rho-specific guanine nucleotide exchange factor (RhoGEF) Syx. J Biol Chem 2013; 288:6640 - 50; http://dx.doi.org/10.1074/jbc.M112.432682; PMID: 23335514
  • Qiao Y, Molina H, Pandey A, Zhang J, Cole PA. Chemical rescue of a mutant enzyme in living cells. Science 2006; 311:1293 - 7; http://dx.doi.org/10.1126/science.1122224; PMID: 16513984
  • Karginov AV, Ding F, Kota P, Dokholyan NV, Hahn KM. Engineered allosteric activation of kinases in living cells. Nat Biotechnol 2010; 28:743 - 7; http://dx.doi.org/10.1038/nbt.1639; PMID: 20581846
  • Karginov AV, Hahn KM. Allosteric activation of kinases: design and application of RapR kinases. Curr Protoc Cell Biol 2011; Chapter 14:Unit 14 3.
  • Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, Young DD, Hahn KM, Deiters A. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J Am Chem Soc 2011; 133:420 - 3; http://dx.doi.org/10.1021/ja109630v; PMID: 21162531
  • Guilluy C, Rolli-Derkinderen M, Loufrani L, Bourgé A, Henrion D, Sabourin L, Loirand G, Pacaud P. Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II Type 2 receptor activation. Circ Res 2008; 102:1265 - 74; http://dx.doi.org/10.1161/CIRCRESAHA.107.164764; PMID: 18420945
  • Sawada N, Itoh H, Yamashita J, Doi K, Inoue M, Masatsugu K, Fukunaga Y, Sakaguchi S, Sone M, Yamahara K, et al. cGMP-dependent protein kinase phosphorylates and inactivates RhoA. Biochem Biophys Res Commun 2001; 280:798 - 805; http://dx.doi.org/10.1006/bbrc.2000.4194; PMID: 11162591
  • Jones SE, Palmer TM. Protein kinase A-mediated phosphorylation of RhoA on serine 188 triggers the rapid induction of a neuroendocrine-like phenotype in prostate cancer epithelial cells. Cell Signal 2012; 24:1504 - 14; http://dx.doi.org/10.1016/j.cellsig.2012.03.018; PMID: 22504159
  • Ellerbroek SM, Wennerberg K, Burridge K. Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 2003; 278:19023 - 31; http://dx.doi.org/10.1074/jbc.M213066200; PMID: 12654918

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.