1,540
Views
51
CrossRef citations to date
0
Altmetric
Special Focus: Collective Cell Migration

Can mesenchymal cells undergo collective cell migration? The case of the neural crest

The case of the neural crest

&
Pages 490-498 | Received 26 Jul 2011, Accepted 02 Nov 2011, Published online: 01 Nov 2011

References

  • Rørth P. Collective cell migration. Annu Rev Cell Dev Biol 2009; 25:407 - 429; PMID: 19575657; http://dx.doi.org/10.1146/annurev.cellbio.042308.113231
  • Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009; 10:445 - 457; PMID: 19546857; http://dx.doi.org/10.1038/nrm2720
  • Hall B. The neural crest and neural crest cells in vertebrate development and evolution 2008; New York Springer
  • Kuriyama S, Mayor R. Molecular analysis of neural crest migration. Philos Trans R Soc Lond B Biol Sci 2008; 363:1349 - 1362; PMID: 18198151; http://dx.doi.org/10.1098/rstb.2007.2252
  • Le Douarin N, Kalcheim C. The neural crest 1999; Cambridge UK; New York NY, USA Cambridge University Press
  • Theveneau E, Mayor R. Collective cell migration of the cephalic neural crest: The art of integrating information. Genesis 2011; 49:164 - 176; PMID: 21157935; http://dx.doi.org/10.1002/dvg.20700
  • Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 2008; 9:557 - 568; PMID: 18523435; http://dx.doi.org/10.1038/nrm2428
  • Steventon B, Carmona-Fontaine C, Mayor R. Genetic network during neural crest induction: from cell specification to cell survival. Semin Cell Dev Biol 2005; 16:647 - 654; PMID: 16084743; http://dx.doi.org/10.1016/j.semcdb.2005.06.001
  • Duband JL. Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest. Cell Adh Migr 2010; 4:458 - 482; PMID: 20559020; http://dx.doi.org/10.4161/cam.4.3.12501
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871 - 890; PMID: 19945376; http://dx.doi.org/10.1016/j.cell.2009.11.007
  • Alfandari D, Cousin H, Marsden M. Mechanism of xenopus cranial neural crest cell migration. Cell Adh Migr 2010; 4:553 - 560; PMID: 20505318; http://dx.doi.org/10.4161/cam.4.4.12202
  • Sadaghiani B, Thiebaud CH. Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev Biol 1987; 124:91 - 110; PMID: 3666314; http://dx.doi.org/10.1016/0012-1606(87)90463-5
  • Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, et al. Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 2010; 19:39 - 53; PMID: 20643349; http://dx.doi.org/10.1016/j.devcel.2010.06.012
  • Mayor R, Carmona-Fontaine C. Keeping in touch with contact inhibition of locomotion. Trends Cell Biol 2010; 20:319 - 328; PMID: 20399659; http://dx.doi.org/10.1016/j.tcb.2010.03.005
  • Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 2008; 456:957 - 961; PMID: 19078960; http://dx.doi.org/10.1038/nature07441
  • Abercrombie M, Dunn GA. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp Cell Res 1975; 92:57 - 62; PMID: 1169157; http://dx.doi.org/10.1016/0014-4827(75)90636-9
  • Abercrombie M, Heaysman JE. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp Cell Res 1953; 5:111 - 131; PMID: 13083622; http://dx.doi.org/10.1016/0014-4827(53)90098-6
  • Theveneau E, Mayor R. Integrating chemotaxis and contact-inhibition during collective cell migration: small GTPases at work. Small GTPases 2010; 1:113 - 117; PMID: 21686264; http://dx.doi.org/10.4161/sgtp.1.2.13673
  • Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larrain J, Holt MR, et al. Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 2008; 135:1771 - 1780; PMID: 18403410; http://dx.doi.org/10.1242/dev.017350
  • Carmona-Fontaine C, Matthews H, Mayor R. Directional cell migration in vivo: Wnt at the crest. Cell Adh Migr 2008; 2:240 - 242; PMID: 19262160; http://dx.doi.org/10.4161/cam.2.4.6747
  • De Calisto J, Araya C, Marchant L, Riaz CF, Mayor R. Essential role of non-canonical Wnt signalling in neural crest migration. Development 2005; 132:2587 - 2597; PMID: 15857909; http://dx.doi.org/10.1242/dev.01857
  • Hörstadius SO. The neural crest; its properties and derivatives in the light of experimental research 1950; London, New York Oxford University Press
  • Kulesa PM, Fraser SE. Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant cultures. Dev Biol 1998; 204:327 - 344; PMID: 9882474; http://dx.doi.org/10.1006/dbio.1998.9082
  • Kulesa PM, Fraser SE. In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches. Development 2000; 127:1161 - 1172; PMID: 10683170
  • Teddy JM, Kulesa PM. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 2004; 131:6141 - 6151; PMID: 15548586; http://dx.doi.org/10.1242/dev.01534
  • McLennan R, Kulesa PM. In vivo analysis reveals a critical role for neuropilin-1 in cranial neural crest cell migration in chick. Dev Biol 2007; 301:227 - 239; PMID: 16959234; http://dx.doi.org/10.1016/j.ydbio.2006.08.019
  • Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R. Cranial neural crest migration: new rules for an old road. Dev Biol 2010; 344:543 - 554; PMID: 20399765; http://dx.doi.org/10.1016/j.ydbio.2010.04.010
  • McKinney MC, Stark DA, Teddy J, Kulesa PM. Neural crest cell communication involves an exchange of cytoplasmic material through cellular bridges revealed by photoconversion of KikGR. Dev Dyn 2011; 240:1391 - 1401; PMID: 21472890; http://dx.doi.org/10.1002/dvdy.22612
  • Burns AJ, Pachnis V. Development of the enteric nervous system: bringing together cells, signals and genes. Neurogastroenterol Motil 2009; 21:100 - 102; PMID: 19215587; http://dx.doi.org/10.1111/j.1365-2982.2008.01255.x
  • Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 1973; 30:31 - 48; PMID: 4729950
  • Yntema CL, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 1954; 101:515 - 541; PMID: 13221667; http://dx.doi.org/10.1002/cne.901010212
  • Epstein ML, Mikawa T, Brown AM, McFarlin DR. Mapping the origin of the avian enteric nervous system with a retroviral marker. Dev Dyn 1994; 201:236 - 244; PMID: 7881127; http://dx.doi.org/10.1002/aja.1002010307
  • Burns AJ, Le Douarin NM. Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras. Anat Rec 2001; 262:16 - 28; PMID: 11146425; http://dx.doi.org/10.1002/1097-0185(20010101)262:1<16::AID-AR1007>3.0.CO;2-O
  • Landman KA, Fernando AE, Zhang D, Newgreen DF. Building stable chains with motile agents: Insights into the morphology of enteric neural crest cell migration. J Theor Biol 2011; 276:250 - 268; PMID: 21296089; http://dx.doi.org/10.1016/j.jtbi.2011.01.043
  • Simpson MJ, Zhang DC, Mariani M, Landman KA, Newgreen DF. Cell proliferation drives neural crest cell invasion of the intestine. Dev Biol 2007; 302:553 - 568; PMID: 17178116; http://dx.doi.org/10.1016/j.ydbio.2006.10.017
  • Landman KA, Simpson MJ, Newgreen DF. Mathematical and experimental insights into the development of the enteric nervous system and Hirschsprung's disease. Dev Growth Differ 2007; 49:277 - 286; PMID: 17501905; http://dx.doi.org/10.1111/j.1440-169X.2007.00929.x
  • Young HM, Bergner AJ, Anderson RB, Enomoto H, Milbrandt J, Newgreen DF, et al. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol 2004; 270:455 - 473; PMID: 15183726; http://dx.doi.org/10.1016/j.ydbio.2004.03.015
  • Kelsh RN, Harris ML, Colanesi S, Erickson CA. Stripes and belly-spots—a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 2009; 20:90 - 104; PMID: 18977309; http://dx.doi.org/10.1016/j.semcdb.2008.10.001
  • Kuo BR, Erickson CA. Regional differences in neural crest morphogenesis. Cell Adh Migr 2010; 4:567 - 585; PMID: 20962585; http://dx.doi.org/10.4161/cam.4.4.12890
  • Krispin S, Nitzan E, Kassem Y, Kalcheim C. Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 2010; 137:585 - 595; PMID: 20110324; http://dx.doi.org/10.1242/dev.041509
  • Kasemeier-Kulesa JC, Kulesa PM, Lefcort F. Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development 2005; 132:235 - 245; PMID: 15590743; http://dx.doi.org/10.1242/dev.01553
  • Rovasio RA, Delouvee A, Yamada KM, Timpl R, Thiery JP. Neural crest cell migration: requirements for exogenous fibronectin and high cell density. J Cell Biol 1983; 96:462 - 473; PMID: 6833366; http://dx.doi.org/10.1083/jcb.96.2.462
  • Thomas LA, Yamada KM. Contact stimulation of cell migration. J Cell Sci 1992; 103:1211 - 1214; PMID: 1487497
  • Rios AC, Serralbo O, Salgado D, Marcelle C. Neural crest regulates myogenesis through the transient activation of NOTCH. Nature 2011; 473:532 - 535; PMID: 21572437; http://dx.doi.org/10.1038/nature09970
  • Erickson CA. Control of neural crest cell dispersion in the trunk of the avian embryo. Dev Biol 1985; 111:138 - 157; PMID: 4029505; http://dx.doi.org/10.1016/0012-1606(85)90442-7
  • Xu X, Francis R, Wei CJ, Linask KL, Lo CW. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 2006; 133:3629 - 3639; PMID: 16914489; http://dx.doi.org/10.1242/dev.02543
  • Anderson RB, Newgreen DF, Young HM. Neural crest and the development of the enteric nervous system. Adv Exp Med Biol 2006; 589:181 - 196; PMID: 17076282; http://dx.doi.org/10.1007/978-0-387-46954-6_11
  • King JS, Insall RH. Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 2009; 19:523 - 530; PMID: 19733079; http://dx.doi.org/10.1016/j.tcb.2009.07.004
  • Zusman DR, Scott AE, Yang Z, Kirby JR. Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 2007; 5:862 - 872; PMID: 17922045; http://dx.doi.org/10.1038/nrmicro1770
  • Carmona-Fontaine C, Theveneau E, Tzekou A, Woods M, Page K, Tada M, et al. Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev Cell 2011; In press
  • Pollet N, Muncke N, Verbeek B, Li Y, Fenger U, Delius H, et al. An atlas of differential gene expression during early Xenopus embryogenesis. Mech Dev 2005; 122:365 - 439; PMID: 15763213; http://dx.doi.org/10.1016/j.mod.2004.11.009
  • Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11:785 - 797; PMID: 20720586; http://dx.doi.org/10.1038/ni.1923
  • Costa RM, Soto X, Chen Y, Zorn AM, Amaya E. spib is required for primitive myeloid development in Xenopus. Blood 2008; 112:2287 - 2296; PMID: 18594023; http://dx.doi.org/10.1182/blood-2008-04-150268
  • Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J 2011; 437:199 - 213; PMID: 21711248; http://dx.doi.org/10.1042/BJ20101603
  • Bachelder RE, Lipscomb EA, Lin X, Wendt MA, Chadborn NH, Eickholt BJ, et al. Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res 2003; 63:5230 - 5233; PMID: 14500350
  • Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 2007; 99:1583 - 1593; PMID: 17971532; http://dx.doi.org/10.1093/jnci/djm187
  • Nagel M, Winklbauer R. Establishment of substratum polarity in the blastocoel roof of the Xenopus embryo. Development 1999; 126:1975 - 1984; PMID: 10101131
  • Winklbauer R, Nagel M, Selchow A, Wacker S. Mesoderm migration in the Xenopus gastrula. Int J Dev Biol 1996; 40:305 - 311; PMID: 8735942
  • Gunzer M, Friedl P, Niggemann B, Brocker EB, Kampgen E, Zanker KS. Migration of dendritic cells within 3-D collagen lattices is dependent on tissue origin, state of maturation and matrix structure and is maintained by proinflammatory cytokines. J Leukoc Biol 2000; 67:622 - 629; PMID: 10811001
  • Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 2009; 10:538 - 549; PMID: 19603038; http://dx.doi.org/10.1038/nrm2729
  • Friedl P, Wolf K. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 2008; 68:7247 - 7249; PMID: 18794108; http://dx.doi.org/10.1158/0008-5472.CAN-08-0784
  • Ilina O, Bakker GJ, Vasaturo A, Hofmann RM, Friedl P. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys Biol 2011; 8:15010; PMID: 21301056; http://dx.doi.org/10.1088/1478-3975/8/1/015010
  • Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 2007; 9:893 - 904; PMID: 17618273; http://dx.doi.org/10.1038/ncb1616
  • Cai DH, Vollberg TM Sr, Hahn-Dantona E, Quigley JP, Brauer PR. MMP-2 expression during early avian cardiac and neural crest morphogenesis. Anat Rec 2000; 259:168 - 179; PMID: 10820319; http://dx.doi.org/10.1002/(SICI)1097-0185(20000601)259:2<168::AID-AR7>3.0.CO;2-U
  • Giambernardi TA, Sakaguchi AY, Gluhak J, Pavlin D, Troyer DA, Das G, et al. Neutrophil collagenase (MMP-8) is expressed during early development in neural crest cells as well as in adult melanoma cells. Matrix Biol 2001; 20:577 - 587; PMID: 11731274; http://dx.doi.org/10.1016/S0945-053X(01)00166-4
  • Cantemir V, Cai DH, Reedy MV, Brauer PR. Tissue inhibitor of metalloproteinase-2 (TIMP-2) expression during cardiac neural crest cell migration and its role in proMMP-2 activation. Dev Dyn 2004; 231:709 - 719; PMID: 15497141; http://dx.doi.org/10.1002/dvdy.20171
  • Duong TD, Erickson CA. MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev Dyn 2004; 229:42 - 53; PMID: 14699576; http://dx.doi.org/10.1002/dvdy.10465
  • Anderson RB. Matrix metalloproteinase-2 is involved in the migration and network formation of enteric neural crest-derived cells. Int J Dev Biol 2010; 54:63 - 69; PMID: 19247964; http://dx.doi.org/10.1387/ijdb.082667ra
  • Alfandari D, Cousin H, Gaultier A, Smith K, White JM, Darribere T, et al. Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration. Curr Biol 2001; 11:918 - 930; PMID: 11448768; http://dx.doi.org/10.1016/S0960-9822(01)00263-9
  • Alfandari D, Wolfsberg TG, White JM, DeSimone DW. ADAM 13: a novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development. Dev Biol 1997; 182:314 - 330; PMID: 9070330; http://dx.doi.org/10.1006/dbio.1996.8458
  • Hall RJ, Erickson CA. ADAM 10: an active metalloprotease expressed during avian epithelial morphogenesis. Dev Biol 2003; 256:147 - 160; PMID: 12654298; http://dx.doi.org/10.1016/S0012-1606(02)00133-1
  • Neuner R, Cousin H, McCusker C, Coyne M, Alfandari D. Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech Dev 2009; 126:240 - 255; PMID: 19027850; http://dx.doi.org/10.1016/j.mod.2008.10.010
  • Silver DL, Hou L, Somerville R, Young ME, Apte SS, Pavan WJ. The secreted metalloprotease ADAMTS20 is required for melanoblast survival. PLoS Genet 2008; 4:1000003; PMID: 18454205; http://dx.doi.org/10.1371/journal.pgen.1000003
  • McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276:43503 - 43508; PMID: 11571304; http://dx.doi.org/10.1074/jbc.M107736200
  • Rodríguez D, Morrison CJ, Overall CM. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 2010; 1803:39 - 54; PMID: 19800373; http://dx.doi.org/10.1016/j.bbamcr.2009.09.015
  • Haas P, Gilmour D. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 2006; 10:673 - 680; PMID: 16678780; http://dx.doi.org/10.1016/j.devcel.2006.02.019
  • Valentin G, Haas P, Gilmour D. The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 2007; 17:1026 - 1031; PMID: 17570670; http://dx.doi.org/10.1016/j.cub.2007.05.020
  • Dambly-Chaudière C, Cubedo N, Ghysen A. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 2007; 7:23; PMID: 17394634; http://dx.doi.org/10.1186/1471-213X-7-23
  • Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 2008; 132:463 - 473; PMID: 18267076; http://dx.doi.org/10.1016/j.cell.2007.12.034
  • Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E, Zerwes HG, et al. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS ONE 2010; 5:9175; PMID: 20161793; http://dx.doi.org/10.1371/journal.pone.0009175
  • Saragosti J, Calvez V, Bournaveas N, Buguin A, Silberzan P, Perthame B. Mathematical description of bacterial traveling pulses. PLOS Comput Biol 2010; 6:1000890; PMID: 20808878; http://dx.doi.org/10.1371/journal.pcbi.1000890
  • Petitjean L, Reffay M, Grasland-Mongrain E, Poujade M, Ladoux B, Buguin A, et al. Velocity fields in a collectively migrating epithelium. Biophys J 2010; 98:1790 - 1800; PMID: 20441742; http://dx.doi.org/10.1016/j.bpj.2010.01.030
  • Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, Mege RM, et al. Traction forces exerted through N-cadherin contacts. Biol Cell 2006; 98:721 - 730; PMID: 16895521; http://dx.doi.org/10.1042/BC20060039
  • Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, et al. Collective cell guidance by cooperative intercellular forces. Nat Mater 2011; 10:469 - 475; PMID: 21602808; http://dx.doi.org/10.1038/nmat3025
  • Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, et al. Physical forces during collective cell migration. Nat Phys 2009; 5:426 - 430; http://dx.doi.org/10.1038/nphys1269
  • Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance and remodeling. J Cell Biol 2011; 192:907 - 917; PMID: 21422226; http://dx.doi.org/10.1083/jcb.201009141
  • Cavey M, Lecuit T. Molecular bases of cell-cell junctions stability and dynamics. Cold Spring Harb Perspect Biol 2009; 1:2998; PMID: 20066121; http://dx.doi.org/10.1101/cshperspect.a002998
  • Cavey M, Rauzi M, Lenne PF, Lecuit T. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 2008; 453:751 - 756; PMID: 18480755; http://dx.doi.org/10.1038/nature06953
  • Hazan RB, Qiao R, Keren R, Badano I, Suyama K. Cadherin switch in tumor progression. Ann NY Acad Sci 2004; 1014:155 - 163; PMID: 15153430; http://dx.doi.org/10.1196/annals.1294.016
  • Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci 2008; 121:727 - 735; PMID: 18322269; http://dx.doi.org/10.1242/jcs.000455
  • Chalpe AJ, Prasad M, Henke AJ, Paulson AF. Regulation of cadherin expression in the chicken neural crest by the Wnt/beta-catenin signaling pathway. Cell Adh Migr 2010; 4:431 - 438; PMID: 20523111; http://dx.doi.org/10.4161/cam.4.3.12138
  • Nakagawa S, Takeichi M. Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 1995; 121:1321 - 1332; PMID: 7540531
  • Nakagawa S, Takeichi M. Neural crest emigration from the neural tube depends on regulated cadherin expression. Development 1998; 125:2963 - 2971; PMID: 9655818
  • Vallin J, Girault JM, Thiery JP, Broders F. Xenopus cadherin-11 is expressed in different populations of migrating neural crest cells. Mech Dev 1998; 75:171 - 174; PMID: 9739138; http://dx.doi.org/10.1016/S0925-4773(98)00099-9
  • Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7:131 - 142; PMID: 16493418; http://dx.doi.org/10.1038/nrm1835