1,007
Views
10
CrossRef citations to date
0
Altmetric
Journal Club

CHIP and gp78-mediated ubiquitination of CYP3A4

Implications for the pharmacology of anticancer agents

, &
Pages 549-551 | Received 14 Jan 2010, Accepted 15 Jan 2010, Published online: 15 Mar 2011

References

  • Guengerich FP. de Montellano O. Cytochrome P450. Structure, Mechanism and Biochemistry 2005; New York, NY Kluwer-Academic 377 - 531
  • Rochat B. Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 2005; 44:349 - 366
  • Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270:414 - 423
  • Liao M, Faouzi S, Karyakin A, Correia MA. Endoplasmic reticulum-associated degradation of cytochrome P450 CYP3A4 in Saccharomyces cerevisiae: further characterization of cellular participants and structural determinants. Mol Pharmacol 2006; 69:1897 - 1904
  • Correia MA, Davoll SH, Wrighton SA, Thomas PE. Degradation of rat liver cytochromes P450 3A after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: characterization of the proteolytic system. Arch Biochem Biophys 1992; 297:228 - 238
  • Correia MA, Decker C, Sugiyama K, Caldera P, Bornheim L, Wrighton SA, et al. Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts. Arch Biochem Biophys 1987; 258:436 - 451
  • Faouzi S, Medzihradszky KF, Hefner C, Maher JJ, Correia MA. Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: a role for the cytosolic AAA ATPase p97?. Biochemistry 2007; 46:7793 - 7803
  • He K, Bornheim LM, Falick AM, Maltby D, Yin H, Correia MA. Identification of the heme-modified peptides from cumene hydroperoxide-inactivated cytochrome P450 3A4. Biochemistry 1998; 37:17448 - 17457
  • Korsmeyer KK, Davoll S, Figueiredo-Pereira ME, Correia MA. Proteolytic degradation of heme-modified hepatic cytochromes P450: A role for phosphorylation, ubiquitination and the 26S proteasome?. Arch Biochem Biophys 1999; 365:31 - 44
  • Pabarcus MK, Hoe N, Sadeghi S, Patterson C, Wiertz E, Correia MA. CYP3A4 ubiquitination by gp78 (the tumor autocrine motility factor receptor, AMFR) and CHIP E3 ligases. Arch Biochem Biophys 2009; 483:66 - 74
  • Wang HF, Figueiredo Pereira ME, Correia MA. Cytochrome P450 3A degradation in isolated rat hepatocytes: 26S proteasome inhibitors as probes. Arch Biochem Biophys 1999; 365:45 - 53
  • Wang X, Medzihradszky KF, Maltby D, Correia MA. Phosphorylation of native and heme-modified CYP3A4 by protein kinase C: a mass spectrometric characterization of the phosphorylated peptides. Biochemistry 2001; 40:11318 - 11326
  • Wang Y, Liao M, Hoe N, Acharya P, Deng C, Krutchinsky AN, et al. A role for protein phosphorylation in cytochrome P450 3A4 ubiquitin-dependent proteasomal degradation. J Biol Chem 2009; 284:5671 - 5684
  • Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet 1996; 30:405 - 439
  • Correia MA, Liao M. Cellular proteolytic systems in P450 degradation: evolutionary conservation from Saccharomyces cerevisiae to mammalian liver. Expert Opin Drug Metab Toxicol 2007; 3:33 - 49
  • Liao M, Pabarcus MK, Wang Y, Hefner C, Maltby DA, Medzihradszky KF, et al. Impaired dexamethasone-mediated induction of tryptophan 2,3-dioxygenase in heme-deficient rat hepatocytes: translational control by a hepatic eIF2alpha kinase, the heme-regulated inhibitor. J Pharmacol Exp Ther 2007; 323:979 - 989
  • Murray BP, Correia MA. Ubiquitin-dependent 26S proteasomal pathway: a role in the degradation of native human liver CYP3A4 expressed in Saccharomyces cerevisiae?. Arch Biochem Biophys 2001; 393:106 - 116
  • Correia MA. Hepatic cytochrome P450 degradation: mechanistic diversity of the cellular sanitation brigade. Drug Metab Rev 2003; 35:107 - 143
  • Fang S, Ferrone M, Yang C, Jensen JP, Tiwari S, Weissman AM. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci USA 2001; 98:14422 - 14427
  • Chen B, Mariano J, Tsai YC, Chan AH, Cohen M, Weissman AM. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger and an E2-binding site. Proc Natl Acad Sci USA 2006; 103:341 - 346
  • Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 2007; 13:1504 - 1509
  • Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L, et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000; 10:373 - 388
  • Lamba V, Panetta JC, Strom S, Schuetz EG. Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J Pharmacol Exp Ther 332:1088 - 1099
  • McLeod HL. Therapeutic drug monitoring opportunities in cancer therapy. Pharmacol Ther 1997; 74:39 - 54
  • Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH. The effect of an individual's cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 2000; 6:1255 - 1258
  • Goetz MP, Knox SK, Suman VJ, Rae JM, Safgren SL, Ames MM, et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 2007; 101:113 - 121
  • Murry DJ, Cherrick I, Salama V, Berg S, Bernstein M, Kuttesch N, et al. Influence of phenytoin on the disposition of irinotecan: a case report. J Pediatr Hematol Oncol 2002; 24:130 - 133
  • Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer 2006; 6:546 - 558
  • Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, Rahman A, et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 2002; 8:935 - 942

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.