1,112
Views
27
CrossRef citations to date
0
Altmetric
Review

Using magnetic resonance imaging and spectroscopy in cancer diagnostics and monitoring

Preclinical and clinical approaches

&
Pages 665-679 | Received 05 Oct 2010, Accepted 18 Sep 2011, Published online: 15 Oct 2011

References

  • Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther 2004; 11:1175 - 1187; PMID: 15141158; http://dx.doi.org/10.1038/sj.gt.3302278
  • Strijkers GJ, Mulder WJ, van Tilborg GA, Nicolay K. MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 2007; 7:291 - 305; PMID: 17504156; http://dx.doi.org/10.2174/187152007780618135
  • Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 2003; 100:10158 - 10163; PMID: 12930897; http://dx.doi.org/10.1073/pnas.1733835100
  • Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 2007; 13:1382 - 1387; PMID: 17965722; http://dx.doi.org/10.1038/nm1650
  • Gadian DG. Nuclear Magnetic Resonance and Its Applications to Living Systems 1995; Oxford, UK Oxford University Press
  • Griffiths JR, Cady EB, Edwards RHT, McCready VR, Wilkie DR, Wiltshaw E. 31P-NMR studies of human tumor in situ. Lancet 1983; i:1435 - 1436; http://dx.doi.org/10.1016/S0140-6736(83)92375-9
  • Gillies RJ, Morse DL. In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 2005; 7:287 - 326; PMID: 16004573; http://dx.doi.org/10.1146/annurev.bioeng.7.060804.100411
  • O'Connor JP, Jackson A, Asselin MC, Buckley DL, Parker GJ, Jayson GC. Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol 2008; 9:766 - 776; PMID: 18672212; http://dx.doi.org/10.1016/S1470-2045(08)70196-7
  • Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11:102 - 125; PMID: 19186405
  • Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 2010; 28:2817 - 2823; PMID: 20458050; http://dx.doi.org/10.1200/JCO.2009.26.3988
  • Gröhn OHJ, Valonen PK, Lehtimaki KK, Vaisanen TH, Kettunen MI, Yla-Herttuala S, et al. Novel magnetic resonance imaging contrast for monitoring response to gene therapy in rat glioma. Cancer Res 2003; 63:7571 - 7574; PMID: 14633668
  • Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 1990; 14:330 - 346; PMID: 2345513; http://dx.doi.org/10.1002/mrm.1910140218
  • Kauppinen RA. Monitoring cytotoxic tumor treatment response by diffusion magnetic resonance imaging and proton spectroscopy. NMR Biomed 2002; 15:6 - 17; PMID: 11840548; http://dx.doi.org/10.1002/nbm.742
  • Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000; 92:2029 - 2036; PMID: 11121466; http://dx.doi.org/10.1093/jnci/92.24.2029
  • Padhani AR, Koh DM. Diffusion MR imaging for monitoring of treatment response. Magn Reson Imaging Clin N Am 2011; 19:181 - 209; PMID: 21129641; http://dx.doi.org/10.1016/j.mric.2010.10.004
  • Gupta RK, Sinha U, Cloughesy TF, Alger JR. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med 1999; 41:2 - 7; PMID: 10025604; http://dx.doi.org/10.1002/(SICI)1522-2594(199901)41:1<2::AIDMRM2>3.0.CO;2-Y
  • Valonen PK, Lehtimaki KK, Vaisanen TH, Kettunen MI, Grohn OH, Yla-Herttuala S, et al. Water diffusion in a rat glioma during ganciclovir-thymidine kinase gene therapy-induced programmed cell death in vivo: correlation with cell density. J Magn Reson Imaging 2004; 19:389 - 396; PMID: 15065161; http://dx.doi.org/10.1002/jmri.20026
  • Gerstner ER, Sorensen AG. Diffusion and diffusion tensor imaging in brain cancer. Semin Radiat Oncol 2011; 21:141 - 146; PMID: 21356481; http://dx.doi.org/10.1016/j.semradonc.2010.10.005
  • Verma S, Rajesh A, Morales H, Lemen L, Bills G, Delworth M, et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol 2011; 196:374 - 381; PMID: 21257890; http://dx.doi.org/10.2214/AJR.10.4441
  • Li XR, Cheng LQ, Liu M, Zhang YJ, Wang JD, Zhang AL, et al. ADC values can predict treatment response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Med Oncol 2011; PMID: 21286861; http://dx.doi.org/10.1007/s12032-011-9842-y
  • Tsushima Y, Takahashi-Taketomi A, Endo K. Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging 2009; 30:249 - 255; PMID: 19629992; http://dx.doi.org/10.1002/jmri.21854
  • Goshima S, Kanematsu M, Kondo H, Yokoyama R, Kajita K, Tsuge Y, et al. Diffusion-weighted imaging of the liver: optimizing b value for the detection and characterization of benign and malignant hepatic lesions. J Magn Reson Imaging 2008; 28:691 - 697; PMID: 18777553; http://dx.doi.org/10.1002/jmri.21467
  • Razek AA. Diffusion-weighted magnetic resonance imaging of head and neck. J Comput Assist Tomogr 2010; 34:808 - 815; PMID: 21084893; http://dx.doi.org/10.1097/RCT.0b013e3181f01796
  • Thoeny HC. Diffusion-weighted MRI in head and neck radiology: applications in oncology. Cancer Imaging 2011; 10:209 - 214; PMID: 21317090; http://dx.doi.org/10.1102/1470-7330.2010.0030
  • Abdulqadhr G, Molin D, Astrom G, Suurkula M, Johansson L, Hagberg H, et al. Whole-body diffusion-weighted imaging compared with FDG-PET/CT in staging of lymphoma patients. Acta Radiol 2011; 52:173 - 180; PMID: 21498346; http://dx.doi.org/10.1258/ar.2010.100246
  • Cafagna D, Rubini G, Iuele F, Maggialetti N, Notaristefano A, Pinto D, et al. Whole-body MR-DWIBS vs. [18F]-FDG-PET/CT in the study of malignant tumors: a retrospective study. Radiol Med (Torino) 2011; In press PMID: 21744252; http://dx.doi.org/10.1007/s11547-011-0708-3
  • Zhao M, Pipe JG, Bonnett J, Evelhoch JL. Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumor in vivo. Br J Cancer 1996; 73:61 - 64; PMID: 8554985; http://dx.doi.org/10.1038/bjc.1996.11
  • Rieger J, Bahr O, Muller K, Franz K, Steinbach J, Hattingen E. Bevacizumab-induced diffusion-restricted lesions in malignant glioma patients. J Neurooncol 2010; 99:49 - 56; PMID: 20035366; http://dx.doi.org/10.1007/s11060-009-0098-8
  • Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging 2006; 24:1131 - 1142; PMID: 17071335; http://dx.doi.org/10.1016/j.mri.2006.07.008
  • Zeng QS, Li CF, Liu H, Zhen JH, Feng DC. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiat Oncol Biol Phys 2007; 68:151 - 158; PMID: 17289287; http://dx.doi.org/10.1016/j.ijrobp.2006.12.001
  • Lambregts DM, Maas M, Riedl RG, Bakers FC, Verwoerd JL, Kessels AG, et al. Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer-a per lesion validation study. Eur Radiol 2011; 21:265 - 273; PMID: 20730540; http://dx.doi.org/10.1007/s00330-010-1937-x
  • Basser PJ, Mattiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66:259 - 267; PMID: 8130344; http://dx.doi.org/10.1016/S0006-3495(94)80775-1
  • Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45:265 - 269; PMID: 9989633; http://dx.doi.org/10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
  • Kim S, Pickup S, Hsu O, Poptani H. Diffusion tensor MRI in rat models of invasive and well-demarcated brain tumors. NMR Biomed 2008; 21:208 - 216; PMID: 17530617; http://dx.doi.org/10.1002/nbm.1183
  • Mori S, Frederiksen K, van Zijl PC, Stieltjes B, Kraut MA, Solaiyappan M, et al. Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol 2002; 51:377 - 380; PMID: 11891834; http://dx.doi.org/10.1002/ana.10137
  • Wang S, Kim S, Chawla S, Wolf RL, Knipp DE, Vossough A, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011; 32:507 - 514; PMID: 21330399; http://dx.doi.org/10.3174/ajnr.A2333
  • Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed 2001; 14:57 - 64; PMID: 11320533; http://dx.doi.org/10.1002/nbm.683
  • Okumura A, Kuwata K, Takenaka K, Nishimura Y, Shirakami S, Sakai N, et al. Pulsed off-resonance magnetization transfer for brain tumor in patients. Neurol Res 1998; 20:313 - 319; PMID: 9618694
  • Pui MH. Magnetization transfer analysis of brain tumor, infection, and infarction. J Magn Reson Imaging 2000; 12:395 - 399; PMID: 10992306; http://dx.doi.org/10.1002/1522-2586(200009)12:3<395::AID-JMRI4>3.0.CO;2-L
  • Bonini RH, Zeotti D, Saraiva LA, Trad CS, Filho JM, Carrara HH, et al. Magnetization transfer ratio as a predictor of malignancy in breast lesions: preliminary results. Magn Reson Med 2008; 59:1030 - 1034; PMID: 18429009; http://dx.doi.org/10.1002/mrm.21555
  • Arnold JF, Kotas M, Pyzalski RW, Pracht ED, Flentje M, Jakob PM. Potential of magnetization transfer MRI for target volume definition in patients with non-small-cell lung cancer. J Magn Reson Imaging 2008; 28:1417 - 1424; PMID: 19025950; http://dx.doi.org/10.1002/jmri.21436
  • Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003; 9:1085 - 1090; PMID: 12872167; http://dx.doi.org/10.1038/nm907
  • van Zijl PC, Zhou J, Mori N, Payen JF, Wilson D, Mori S. Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 2003; 49:440 - 449; PMID: 12594746; http://dx.doi.org/10.1002/mrm.10398
  • Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 2011; 17:130 - 134; PMID: 21170048; http://dx.doi.org/10.1038/nm.2268
  • Sepponen RE, Pohjonen JA, Sipponen JT, Tanttu JI. A method for T1ρ imaging. J Comput Assist Tomogr 1985; 9:1007 - 1011; PMID: 4056129; http://dx.doi.org/10.1097/00004728-198511000-00002
  • Markkola AT, Aronen HJ, Paavonen T, Hopsu E, Sipila LM, Tanttu JI, et al. Spin lock and magnetization transfer imaging of head and neck tumors. Radiology 1996; 200:369 - 375; PMID: 8685328
  • Hakumäki JM, Grohn OH, Tyynela K, Valonen P, Yla-Herttuala S, Kauppinen RA. Early gene therapy-induced apoptotic response in BT4C gliomas by magnetic resonance relaxation contrast T1 in the rotating frame. Cancer Gene Ther 2002; 9:338 - 345; PMID: 11960284; http://dx.doi.org/10.1038/sj.cgt.7700450
  • Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 1992; 89:212 - 216; PMID: 1729691; http://dx.doi.org/10.1073/pnas.89.1.212
  • Golay X, Hendrikse J, Lim TC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 2004; 15:10 - 27; PMID: 15057170; http://dx.doi.org/10.1097/00002142-200402000-00003
  • Mueller-Lisse UG, Mueller-Lisse UL. Imaging of advanced renal cell carcinoma. World J Urol 2010; 28:253 - 261; PMID: 20458484; http://dx.doi.org/10.1007/s00345-010-0557-z
  • Moffat BA, Chenevert TL, Hall DE, Rehemtulla A, Ross BD. Continuous arterial spin labeling using a train of adiabatic inversion pulses. J Magn Reson Imaging 2005; 21:290 - 296; PMID: 15723380; http://dx.doi.org/10.1002/jmri.20268
  • Weber MA, Zoubaa S, Schlieter M, Juttler E, Huttner HB, Geletneky K, et al. Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 2006; 66:1899 - 1906; PMID: 16801657; http://dx.doi.org/10.1212/01.wnl.0000219767.49705.9c
  • Wolf RL, Wang J, Wang S, Melhem ER, O'Rourke DM, Judy KD, et al. Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging 2005; 22:475 - 482; PMID: 16161080; http://dx.doi.org/10.1002/jmri.20415
  • Chawla S, Wang S, Wolf RL, Woo JH, Wang J, O'Rourke DM, et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol 2007; 28:1683 - 1689; PMID: 17893221; http://dx.doi.org/10.3174/ajnr.A0673
  • Lu H, Law M, Johnson G, Ge Y, van Zijl PC, Helpern JA. Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med 2005; 54:1403 - 1411; PMID: 16254955; http://dx.doi.org/10.1002/mrm.20705
  • Lu H, Pollack E, Young R, Babb JS, Johnson G, Zagzag D, et al. Predicting grade of cerebral glioma using vascular-space occupancy MR imaging. AJNR Am J Neuroradiol 2008; 29:373 - 378; PMID: 17974612; http://dx.doi.org/10.3174/ajnr.A0794
  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumors. Nat Rev Neurosci 2007; 8:610 - 622; PMID: 17643088; http://dx.doi.org/10.1038/nrn2175
  • Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 2005; 97:172 - 187; PMID: 15687360; http://dx.doi.org/10.1093/jnci/dji023
  • Wong ET, Brem S. Antiangiogenesis treatment for glioblastoma multiforme: challenges and opportunities. J Natl Compr Canc Netw 2008; 6:515 - 522; PMID: 18492463
  • Zee YK, O'Connor JP, Parker GJ, Jackson A, Clamp AR, Taylor MB, et al. Imaging angiogenesis of genitourinary tumors. Nat Rev Urol 2010; 7:69 - 82; PMID: 20084077; http://dx.doi.org/10.1038/nrurol.2009.262
  • Kennan RP, Jager HR. T2- and T2*-w DCE-MRI: Blood perfusion and volume estimation using bolus tracking. Quantitative MRI of the Brain. Tofts PB 2004; Chippenham John Wiley & Sons Ltd 365 - 412
  • Parker GJM, Padhani AR. T1-w DCE-MRI: T1-weighted Dynamic Contrast-Enhanced MRI. Quantitative MRI of the Brain. Tofts PS 2004; Chippenham John Wiley & Sons Ltd 341 - 364
  • Galbán CJ, Chenevert TL, Meyer CR, Tsien C, Lawrence TS, Hamstra DA, et al. The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med 2009; 15:572 - 576; PMID: 19377487; http://dx.doi.org/10.1038/nm.1919
  • Perini R, Choe R, Yodh AG, Sehgal C, Divgi CR, Rosen MA. Non-invasive assessment of tumor neovasculature: techniques and clinical applications. Cancer Metastasis Rev 2008; 27:615 - 630; PMID: 18506398; http://dx.doi.org/10.1007/s10555-008-9147-6
  • Gerstner ER, Duda DG, di Tomaso E, Ryg PA, Loeffler JS, Sorensen AG, et al. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 2009; 6:229 - 236; PMID: 19333229; http://dx.doi.org/10.1038/nrclinonc.2009.14
  • Pickles MD, Manton DJ, Lowry M, Turnbull LW. Prognostic value of pre-treatment DCE-MRI parameters in predicting disease free and overall survival for breast cancer patients undergoing neoadjuvant chemotherapy. Eur J Radiol 2009; 71:498 - 505; PMID: 18572340; http://dx.doi.org/10.1016/j.ejrad.2008.05.007
  • Flaherty KT, Rosen MA, Heitjan DF, Gallagher ML, Schwartz B, Schnall MD, et al. Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 2008; 7:496 - 501; PMID: 18219225; http://dx.doi.org/10.4161/cbt.7.4.5624
  • Shukla-Dave A, Lee NY, Jansen JF, Thaler HT, Stambuk HE, Fury MG, et al. Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head and neck squamous cell carcinoma patients with nodal metastases. Int J Radiat Oncol Biol Phys 2011; In press PMID: 21601373; http://dx.doi.org/10.1016/j.ijrobp.2011.03.006
  • Shen Y, Ahearn T, Clemence M, Schwarzbauer C. Magnetic resonance imaging of the mean venous vessel size in the human brain using transient hyperoxia. Neuroimage 2011; 55:1063 - 1067; PMID: 21224003; http://dx.doi.org/10.1016/j.neuroimage.2010.12.084
  • Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 1998; 40:793 - 799; PMID: 9840821; http://dx.doi.org/10.1002/mrm.1910400602
  • Troprès I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, et al. Vessel size imaging. Magn Reson Med 2001; 45:397 - 408; PMID: 11241696; http://dx.doi.org/10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.0.CO;2-3
  • Ungersma SE, Pacheco G, Ho C, Yee SF, Ross J, van Bruggen N, et al. Vessel imaging with viable tumor analysis for quantification of tumor angiogenesis. Magn Reson Med 2010; 63:1637 - 1647; PMID: 20512867; http://dx.doi.org/10.1002/mrm.22442
  • Farrar CT, Kamoun WS, Ley CD, Kim YR, Catana C, Kwon SJ, et al. Sensitivity of MRI Tumor Biomarkers to VEGFR Inhibitor Therapy in an Orthotopic Mouse Glioma Model. PLoS ONE 2011; 6:e17228; PMID: 21390238; http://dx.doi.org/10.1371/journal.pone.0017228
  • Douma K, Oostendorp M, Slaaf DW, Post MJ, Backes WH, van Zandvoort MA. Evaluation of magnetic resonance vessel size imaging by two-photon laser scanning microscopy. Magn Reson Med 2010; 63:930 - 939; PMID: 20373394; http://dx.doi.org/10.1002/mrm.22248.
  • Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990; 87:9868 - 9872; PMID: 2124706; http://dx.doi.org/10.1073/pnas.87.24.9868
  • Buxton RB, Frank LR. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 1997; 17:64 - 72; PMID: 8978388; http://dx.doi.org/10.1097/00004647-199701000-00009
  • van Zijl PC, Eleff SM, Ulatowski JA, Oja JM, Ulug AM, Traystman RJ, et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med 1998; 4:159 - 167; PMID: 9461188; http://dx.doi.org/10.1038/nm0298-159
  • Howe FA, Robinson SP, McIntyre DJ, Stubbs M, Griffiths JR. Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumors. NMR Biomed 2001; 14:497 - 506; PMID: 11746943; http://dx.doi.org/10.1002/nbm.716
  • Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl PCM. Comparision of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 tesla. Magn Reson Med 2003; 49:47 - 60; PMID: 12509819; http://dx.doi.org/10.1002/mrm.10355
  • Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 2011; 24:114 - 129; PMID: 20842758; http://dx.doi.org/10.1002/nbm.1570
  • Liu KJ, Bacic G, Hoopes PJ, Jiang JJ, Du HK, Ou LC, et al. Assessment of cerebral pO2 by EPR oximetry in rodents: effects of anesthesia, ischemia, and breathing gas. Brain Res 1995; 685:91 - 98; PMID: 7583257; http://dx.doi.org/10.1016/0006-8993(95)00413-K
  • Rijpkema M, Schuuring J, Bernsen PL, Bernsen HJ, Kaanders JH, van der Kogel AJ, et al. BOLD MRI response to hypercapnic hyperoxia in patients with meningiomas: correlation with Gadolinium-DTPA uptake rate. Magn Reson Imaging 2004; 22:761 - 767; PMID: 15234444; http://dx.doi.org/10.1016/j.mri.2004.01.055
  • Remmele S, Dahnke H, Flacke S, Soehle M, Wenningmann I, Kovacs A, et al. Quantification of the magnetic resonance signal response to dynamic CO2-enhanced imaging in the brain at 3 T: R2* BOLD vs. balanced SSFP. J Magn Reson Imaging 2010; 31:1300 - 1310; PMID: 20512881; http://dx.doi.org/10.1002/jmri.22171
  • Rauscher A, Sedlacik J, Fitzek C, Walter B, Hochstetter A, Kalff R, et al. High resolution susceptibility weighted MR-imaging of brain tumors during the application of a gaseous agent. Rofo 2005; 177:1065 - 1069; PMID: 16021537
  • Yetkin FZ, Mendelsohn D. Hypoxia imaging in brain tumors. Neuroimaging Clin N Am 2002; 12:537 - 552; PMID: 12687910; http://dx.doi.org/10.1016/S1052-5149(02)00029-1
  • Müller A, Remmele S, Wenningmann I, Clusmann H, Traber F, Flacke S, et al. Intracranial tumor response to respiratory challenges at 3.0 T: impact of different methods to quantify changes in the MR relaxation rate R2*. J Magn Reson Imaging 2010; 32:17 - 23; PMID: 20578006; http://dx.doi.org/10.1002/jmri.22205
  • Matsumoto S, Hyodo F, Subramanian S, Devasahayam N, Munasinghe J, Hyodo E, et al. Low-field paramagnetic resonance imaging of tumor oxygenation and glycolytic activity in mice. J Clin Invest 2008; 118:1965 - 1973; PMID: 18431513
  • Ouwerkerk R, Jacobs MA, Macura KJ, Wolff AC, Stearns V, Mezban SD, et al. Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI. Breast Cancer Res Treat 2007; 106:151 - 160; PMID: 17260093; http://dx.doi.org/10.1007/s10549-006-9485-4
  • Bartha R, Megyesi JF, Watling CJ. Low-grade glioma: correlation of short echo time 1H-MR spectroscopy with 23Na MR imaging. AJNR Am J Neuroradiol 2008; 29:464 - 470; PMID: 18238848; http://dx.doi.org/10.3174/ajnr.A0854
  • Schepkin VD, Ross BD, Chenevert TL, Rehemtulla A, Sharma S, Kumar M, et al. Sodium magnetic resonance imaging of chemotherapeutic response in a rat glioma. Magn Reson Med 2005; 53:85 - 92; PMID: 15690506; http://dx.doi.org/10.1002/mrm.20332
  • Möller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 2002; 44:371 - 381; PMID: 12012120; http://dx.doi.org/10.1007/s00234-001-0760-0
  • Hourani R, Horska A, Albayram S, Brant LJ, Melhem E, Cohen KJ, et al. Proton magnetic resonance spectroscopic imaging to differentiate between nonneoplastic lesions and brain tumors in children. J Magn Reson Imaging 2006; 23:99 - 107; PMID: 16374884; http://dx.doi.org/10.1002/jmri.20480
  • Miles KA, Williams RE. Warburg revisited: imaging tumor blood flow and metabolism. Cancer Imaging 2008; 8:81 - 86; PMID: 18390391; http://dx.doi.org/10.1102/1470-7330.2008.0011
  • García-Martin ML, Herigault G, Remy C, Farion R, Ballesteros P, Coles JA, et al. Mapping extracellular pH in rat brain gliomas in vivo by 1H magnetic resonance spectroscopic imaging: comparison with maps of metabolites. Cancer Res 2001; 61:6524 - 6531; PMID: 11522650
  • Burtscher IM, Skagerberg G, Geijer B, Englund E, Stahlberg F, Holtas S. Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol 2000; 21:84 - 93; PMID: 10669230
  • Preul MC, Caramanos Z, Leblanc R, Villemure JG, Arnold DL. Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors. NMR Biomed 1998; 11:192 - 200; PMID: 9719573; http://dx.doi.org/10.1002/(SICI)1099-1492(199806/08)11:4/5<192::AID-NBM535>3.0.CO;2-3
  • Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 1996; 2:323 - 325; PMID: 8612232; http://dx.doi.org/10.1038/nm0396-323
  • Tate AR, Majos C, Moreno A, Howe FA, Griffiths JR, Arus C. Automated classification of short echo time in in vivo 1H brain tumor spectra: a multicenter study. Magn Reson Med 2003; 49:29 - 36; PMID: 12509817; http://dx.doi.org/10.1002/mrm.10315
  • Panigrahy A, Krieger MD, Gonzalez-Gomez I, Liu X, McComb JG, Finlay JL, et al. Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 2006; 27:560 - 572; PMID: 16551993
  • Davies NP, Wilson M, Harris LM, Natarajan K, Lateef S, Macpherson L, et al. Identification and characterisation of childhood cerebellar tumors by in vivo proton MRS. NMR Biomed 2008; 21:908 - 918; PMID: 18613254; http://dx.doi.org/10.1002/nbm.1283
  • García-Gómez JM, Luts J, Julia-Sape M, Krooshof P, Tortajada S, Robledo JV, et al. Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. MAGMA 2009; 22:5 - 18; PMID: 18989714; http://dx.doi.org/10.1007/s10334-008-0146-y
  • Tate AR, Underwood J, Acosta DM, Julia-Sape M, Majos C, Moreno-Torres A, et al. Development of a decision support system for diagnosis and grading of brain tumors using in vivo magnetic resonance single voxel spectra. NMR Biomed 2006; 19:411 - 434; PMID: 16763971; http://dx.doi.org/10.1002/nbm.1016
  • Celda B, Monleon D, Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Pinero E, et al. MRS as endogenous molecular imaging for brain and prostate tumors: FP6 project “eTUMOR”. Adv Exp Med Biol 2006; 587:285 - 302; PMID: 17163172; http://dx.doi.org/10.1007/978-1-4020-5133-3_22
  • Castillo M, Smith JK, Kwock L. Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR Am J Neuroradiol 2000; 21:1645 - 1649; PMID: 11039343
  • Shimizu H, Kumabe T, Shirane R, Yoshimoto T. Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol 2000; 21:659 - 665; PMID: 10782774
  • Davies NP, Wilson M, Natarajan K, Sun L, MacPherson L, Brundler MA, et al. Non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumors using in-vivo 1H MRS at 1.5 Tesla confirmed by ex-vivo high-resolution magic-angle spinning NMR. NMR Biomed 2010; 23:80 - 87; PMID: 19795380; http://dx.doi.org/10.1002/nbm.1432
  • Peet AC, Davies NP, Ridley L, Brundler MA, Kombogiorgas D, Lateef S, et al. Magnetic resonance spectroscopy suggests key differences in the metastatic behaviour of medulloblastoma. Eur J Cancer 2007; 43:1037 - 1044; PMID: 17349783; http://dx.doi.org/10.1016/j.ejca.2007.01.019
  • Marcus KJ, Astrakas LG, Zurakowski D, Zarifi MK, Mintzopoulos D, Poussaint TY, et al. Predicting survival of children with CNS tumors using proton magnetic resonance spectroscopic imaging biomarkers. Int J Oncol 2007; 30:651 - 657; PMID: 17273766
  • Harris LM, Davies NP, Macpherson L, Lateef S, Natarajan K, Brundler MA, et al. Magnetic resonance spectroscopy in the assessment of pilocytic astrocytomas. Eur J Cancer 2008; 44:2640 - 2647; PMID: 18835152; http://dx.doi.org/10.1016/j.ejca.2008.08.012
  • Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 2002; 16:451 - 463; PMID: 12353259; http://dx.doi.org/10.1002/jmri.10172
  • Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology 1999; 213:473 - 480; PMID: 10551229
  • Cookson MS, Fleshner NE, Soloway SM, Fair WR. Correlation between Gleason score of needle biopsy and radical prostatectomy specimen: accuracy and clinical implications. J Urol 1997; 157:559 - 562; PMID: 8996356; http://dx.doi.org/10.1016/S00225347(01)65201-7
  • Swindle P, McCredie S, Russell P, Himmelreich U, Khadra M, Lean C, et al. Pathologic characterization of human prostate tissue with proton MR spectroscopy. Radiology 2003; 228:144 - 151; PMID: 12832578; http://dx.doi.org/10.1148/radiol.2281011808
  • Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med 2003; 50:944 - 954; PMID: 14587005; http://dx.doi.org/10.1002/mrm.10614
  • Swanson MG, Vigneron DB, Tran TK, Sailasuta N, Hurd RE, Kurhanewicz J. Single-voxel oversampled J-resolved spectroscopy of in vivo human prostate tissue. Magn Reson Med 2001; 45:973 - 980; PMID: 11378874; http://dx.doi.org/10.1002/mrm.1130
  • Crehange G, Maingon P, Gauthier M, Parfait S, Cochet A, Mirjolet C, et al. Early Choline Levels from 3-Tesla MR Spectroscopy After Exclusive Radiation Therapy in Patients with Clinically Localized Prostate Cancer are Predictive of Plasmatic Levels of PSA at 1 Year. Int J Radiat Oncol Biol Phys 2011; In press PMID: 21605949; http://dx.doi.org/10.1016/j.ijrobp.2011.03.008
  • Mountford CE, Somorjai RL, Malycha P, Gluch L, Lean C, Russell P, et al. Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical classification strategy. Br J Surg 2001; 88:1234 - 1240; PMID: 11531873; http://dx.doi.org/10.1046/j.00071323.2001.01864.x
  • Kvistad KA, Bakken IJ, Gribbestad IS, Ehrnholm B, Lundgren S, Fjosne HE, et al. Characterization of neoplastic and normal human breast tissues with in vivo 1H MR spectroscopy. J Magn Reson Imaging 1999; 10:159 - 164; PMID: 10441019; http://dx.doi.org/10.1002/(SICI)1522-2586(199908)10:2<159::AID-JMRI8>3.0.CO;2-0
  • Huang W, Fisher PR, Dulaimy K, Tudorica LA, O'Hea B, Button TM. Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 2004; 232:585 - 591; PMID: 15205478; http://dx.doi.org/10.1148/radiol.2322030547
  • Scholl SM, Pierga JY, Asselain B, Beuzeboc P, Dorval T, Garcia-Giralt E, et al. Breast tumor response to primary chemotherapy predicts local and distant control as well as survival. Eur J Cancer 1995; 31A:1969 - 1975; PMID: 8562150; http://dx.doi.org/10.1016/0959-8049(95)00454-8
  • Jagannathan NR, Kumar M, Seenu V, Coshic O, Dwivedi SN, Julka PK, et al. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 2001; 84:1016 - 1022; PMID: 11308247; http://dx.doi.org/10.1054/bjoc.2000.1711
  • Meisamy S, Bolan PJ, Baker EH, Gulbache E, Everson LI, Nelson MT, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo 1H MR spectroscopy: a pilot study at 4 T. Radiology 2004; 233:424 - 431; PMID: 15516615; http://dx.doi.org/10.1148/radiol.2332031285
  • Hakumäki JM, Kauppinen RA. 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci 2000; 25:357 - 362; PMID: 10916153; http://dx.doi.org/10.1016/S0968-0004(00)01614-5
  • Zoula S, Rijken PF, Peters JP, Farion R, Van der Sanden BP, Van der Kogel AJ, et al. Pimonidazole binding in C6 rat brain glioma: relation with lipid droplet detection. Br J Cancer 2003; 88:1439 - 1444; PMID: 12778075; http://dx.doi.org/10.1038/sj.bjc.6600837
  • Kuesel AC, Donnelly SM, Halliday W, Sutherland GR, Smith ICP. Mobile lipids and metabolic heterogeneity of brain tumors as detectable by ex vivo 1H MR spectroscopy. NMR Biomed 1994; 7:172 - 180; PMID: 7946995; http://dx.doi.org/10.1002/nbm.1940070404
  • Maris JM, Evans AE, McLaughlin AC, D'Angio GJ, Bolinger L, Manos H, et al. 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. N Engl J Med 1985; 312:1500 - 1505; PMID: 3990750; http://dx.doi.org/10.1056/NEJM198506063122307
  • Koutcher JA, Ballon D, Graham M, Healey JH, Casper ES, Heelan R, et al. 31P NMR spectra of extremity sarcomas: diversity of metabolic profiles and changes in response to chemotherapy. Magn Reson Med 1990; 16:19 - 34; PMID: 2175008; http://dx.doi.org/10.1002/mrm.1910160104
  • Möller HE, Vermathen P, Rummeny E, Wortler K, Wuisman P, Rossner A, et al. In vivo 31P NMR spectroscopy of human musculoskeletal tumors as a measure of response to chemotherapy. NMR Biomed 1996; 9:347 - 358; PMID: 9176889; http://dx.doi.org/10.1002/(SICI)1099-1492(199612)9:8<347::AID-NBM431>3.0.CO;2-3
  • Shulman RG, Brown TR, Ugurbil K, Ogawa S, Cohen SM, den Hollander JA. Cellular applications of 31P and 13C nuclear magnetic resonance. Science 1979; 205:160 - 166; PMID: 36664; http://dx.doi.org/10.1126/science.36664
  • Witney TH, Kettunen MI, Hu DE, Gallagher FA, Bohndiek SE, Napolitano R, et al. Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. Br J Cancer 2010; 103:1400 - 1406; PMID: 20924379; http://dx.doi.org/10.1038/sj.bjc.6605945
  • Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008; 453:940 - 943; PMID: 18509335; http://dx.doi.org/10.1038/nature07017
  • Stevens AN, Morris PG, Iles RA, Sheldon PW, Griffiths JR. 5-fluorouracil metabolism monitored in vivo by 19F NMR. Br J Cancer 1984; 50:113 - 117; PMID: 6743508; http://dx.doi.org/10.1038/bjc.1984.146
  • McSheehy PM, Robinson SP, Ojugo AS, Aboagye EO, Cannell MB, Leach MO, et al. Carbogen breathing increases 5-fluorouracil uptake and cytotoxicity in hypoxic murine RIF-1 tumors: a magnetic resonance study in vivo. Cancer Res 1998; 58:1185 - 1194; PMID: 9515804
  • Kamm YJ, Heerschap A, van den Bergh EJ, Wagener DJ. 19F-magnetic resonance spectroscopy in patients with liver metastases of colorectal cancer treated with 5-fluorouracil. Anticancer Drugs 2004; 15:229 - 233; PMID: 15014355; http://dx.doi.org/10.1097/00001813-200403000-00006
  • Schlemmer HP, Bachert P, Semmler W, Hohenberger P, Schlag P, Lorenz WJ, et al. Drug monitoring of 5-fluorouracil: in vivo 19F NMR study during 5-FU chemotherapy in patients with metastases of colorectal adenocarcinoma. Magn Reson Imaging 1994; 12:497 - 511; PMID: 8007780; http://dx.doi.org/10.1016/0730725X(94)92544-5
  • Wilson M, Davies NP, Grundy RG, Peet AC. A quantitative comparison of metabolite signals as detected by in vivo MRS with ex vivo 1H HR-MAS for childhood brain tumors. NMR Biomed 2009; 22:213 - 219; PMID: 19067434; http://dx.doi.org/10.1002/nbm.1306
  • Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC. High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumors. Mol Cancer 2009; 8:6; PMID: 19208232; http://dx.doi.org/10.1186/1476-4598-8-6.
  • Griffin JL, Blenkiron C, Valonen PK, Caldas C, Kauppinen RAA. HRMAS 1H NMR spectroscopy and reverse transcription-PCR analysis of apoptosis in a rat glioma. Anal Chem 2006; 78:1546 - 1552; PMID: 16503606; http://dx.doi.org/10.1021/ac051418o
  • Lehtimäki KK, Valonen PK, Griffin JL, Vaisanen TH, Grohn OH, Kettunen MI, et al. Metabolite changes in BT4C rat gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death as studied by 1H NMR spectroscopy in vivo, ex vivo, and in vitro. J Biol Chem 2003; 278:45915 - 45923; PMID: 12954643; http://dx.doi.org/10.1074/jbc.M306209200
  • Hekmatyar SK, Wilson M, Jerome N, Salek RS, Griffin JL, Peet A, et al. Metabolic characterization of cerebellum inthe SMO mice, a model for medulloblastoma, using 1H nuclear magnetic resonance spectroscopy. Br J Cancer 2010; 103:1297 - 1304; PMID: 20842126; http://dx.doi.org/10.1038/sj.bjc.6605890
  • Yang Y, Li C, Nie X, Feng X, Chen W, Yue Y, et al. Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteome Res 2007; 6:2605 - 2614; PMID: 17564425; http://dx.doi.org/10.1021/pr070063h
  • Mirbahai L, Wilson M, Shaw CS, McConville C, Malcomson RD, Griffin JL, et al. 1H magnetic resonance spectroscopy metabolites as biomarkers for cell cycle arrest and cell death in rat glioma cells. Int J Biochem Cell Biol 2011; 43:990 - 1001; PMID: 20633697; http://dx.doi.org/10.1016/j.biocel.2010.07.002
  • Williams SN, Anthony ML, Brindle KM. Induction of apoptosis in two mammalian cell lines results in increased levels of fructose-1,6-bisphosphate and CDP-choline as determined by 31P MRS. Magn Reson Med 1998; 40:411 - 420; PMID: 9727944; http://dx.doi.org/10.1002/mrm.1910400311
  • Lutz NW, Tome ME, Cozzone PJ. Early changes in glucose and phospholipid metabolism following apoptosis induction by IFN-gamma/TNF-alpha in HT-29 cells. FEBS Lett 2003; 544:123 - 128; PMID: 12782301; http://dx.doi.org/10.1016/S0014-5793(03)00489-7
  • Hakumäki JM, Poptani H, Sandmair A-M, Ylä-Herttuala S, Kauppinen RA. 1H MRS detects polyunsaturated fatty acid accumulation during gene therapy of glioma: implications for the in vivo detection of apoptosis. Nat Med 1999; 5:1323 - 1327; PMID: 10546002; http://dx.doi.org/10.1038/15279
  • Artemov D, Mori N, Okollie B, Bhujwalla ZM. MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003; 49:403 - 408; PMID: 12594741; http://dx.doi.org/10.1002/mrm.10406
  • Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000; 6:351 - 355; PMID: 10700241; http://dx.doi.org/10.1038/73219
  • Cohen B, Ziv K, Plaks V, Israely T, Kalchenko V, Harmelin A, et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 2007; 13:498 - 503; PMID: 17351627; http://dx.doi.org/10.1038/nm1497
  • Zhao M, Bearegard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001; 7:1241 - 1244; PMID: 11689890; http://dx.doi.org/10.1038/nm1101-1241
  • Krishnan AS, Neves AA, de Backer MM, Hu DE, Davletov B, Kettunen MI, et al. Detection of cell death in tumors by using MR imaging and a gadolinium-based targeted contrast agent. Radiology 2008; 246:854 - 862; PMID: 18187402; http://dx.doi.org/10.1148/radiol.2463070471
  • Strijkers GJ, Kluza E, Van Tilborg GA, van der Schaft DW, Griffioen AW, Mulder WJ, et al. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis 2010; 13:161 - 173; PMID: 20390447; http://dx.doi.org/10.1007/s10456-010-9165-1
  • Shiftan L, Israely T, Cohen M, Frydman V, Dafni H, Stern R, et al. Magnetic resonance imaging visualization of hyaluronidase in ovarian carcinoma. Cancer Res 2005; 65:10316 - 10323; PMID: 16288020; http://dx.doi.org/10.1158/0008-5472.CAN-04-3947

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.