1,735
Views
30
CrossRef citations to date
0
Altmetric
Review

Role of chemokines and their receptors in chronic lymphocytic leukemia

Function in microenvironment and targeted therapy

, , &
Pages 3-9 | Received 06 Aug 2013, Accepted 25 Sep 2013, Published online: 22 Oct 2013

References

  • Doubek M, Mayer J, Obrtlíková P, Smolej L, Cmunt E, Schwarz J, Brejcha M, Kozmon P, Pospíšilová S, Brychtová Y, et al. Modern and conventional prognostic markers of chronic lymphocytic leukaemia in the everyday haematological practice. Eur J Haematol 2011; 87:130 - 7; http://dx.doi.org/10.1111/j.1600-0609.2011.01639.x; PMID: 21535162
  • Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365:2497 - 506; http://dx.doi.org/10.1056/NEJMoa1109016; PMID: 22150006
  • Sagatys EM, Zhang L. Clinical and laboratory prognostic indicators in chronic lymphocytic leukemia. Cancer Control 2012; 19:18 - 25; PMID: 22143059
  • Herishanu Y, Pérez-Galán P, Liu D, Biancotto A, Pittaluga S, Vire B, Gibellini F, Njuguna N, Lee E, Stennett L, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117:563 - 74; http://dx.doi.org/10.1182/blood-2010-05-284984; PMID: 20940416
  • Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood 2010; 115:1755 - 64; http://dx.doi.org/10.1182/blood-2009-09-242719; PMID: 20018914
  • Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C, Lu W, Burger JA, Croce CM, Plunkett W, et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 2012; 14:276 - 86; http://dx.doi.org/10.1038/ncb2432; PMID: 22344033
  • Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114:3367 - 75; http://dx.doi.org/10.1182/blood-2009-06-225326; PMID: 19636060
  • Katz BZ, Polliack A. Cancer microenvironment, extracellular matrix, and adhesion molecules: the bitter taste of sugars in chronic lymphocytic leukemia. Leuk Lymphoma 2011; 52:1619 - 20; http://dx.doi.org/10.3109/10428194.2011.589551; PMID: 21702641
  • Bäckman E, Bergh AC, Lagerdahl I, Rydberg B, Sundström C, Tobin G, Rosenquist R, Linderholm M, Rosén A. Thioredoxin, produced by stromal cells retrieved from the lymph node microenvironment, rescues chronic lymphocytic leukemia cells from apoptosis in vitro. Haematologica 2007; 92:1495 - 504; http://dx.doi.org/10.3324/haematol.11448; PMID: 18024398
  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12:121 - 7; http://dx.doi.org/10.1016/S1074-7613(00)80165-X; PMID: 10714678
  • Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000; 96:2655 - 63; PMID: 11023495
  • Kunkel SL, Strieter RM, Lindley IJ, Westwick J. Chemokines: new ligands, receptors and activities. Immunol Today 1995; 16:559 - 61; http://dx.doi.org/10.1016/0167-5699(95)80076-X; PMID: 8579746
  • Lukacs NW, Oliveira SH, Hogaboam CM. Chemokines and asthma: redundancy of function or a coordinated effort?. J Clin Invest 1999; 104:995 - 9; http://dx.doi.org/10.1172/JCI8125; PMID: 10525033
  • Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 2009; 9:618 - 29; PMID: 19644499
  • Yan XJ, Dozmorov I, Li W, Yancopoulos S, Sison C, Centola M, Jain P, Allen SL, Kolitz JE, Rai KR, et al. Identification of outcome-correlated cytokine clusters in chronic lymphocytic leukemia. Blood 2011; 118:5201 - 10; http://dx.doi.org/10.1182/blood-2011-03-342436; PMID: 21911837
  • Burger M, Hartmann T, Krome M, Rawluk J, Tamamura H, Fujii N, Kipps TJ, Burger JA. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 2005; 106:1824 - 30; http://dx.doi.org/10.1182/blood-2004-12-4918; PMID: 15905192
  • Ishikawa S, Sato T, Abe M, Nagai S, Onai N, Yoneyama H, Zhang Y, Suzuki T, Hashimoto S, Shirai T, et al. Aberrant high expression of B lymphocyte chemokine (BLC/CXCL13) by C11b+CD11c+ dendritic cells in murine lupus and preferential chemotaxis of B1 cells towards BLC. J Exp Med 2001; 193:1393 - 402; http://dx.doi.org/10.1084/jem.193.12.1393; PMID: 11413194
  • El-Shazly AE, Doloriert HC, Bisig B, Lefebvre PP, Delvenne P, Jacobs N. Novel cooperation between CX3CL1 and CCL26 inducing NK cell chemotaxis via CX3CR1: a possible mechanism for NK cell infiltration of the allergic nasal tissue. Clin Exp Allergy 2013; 43:322 - 31; http://dx.doi.org/10.1111/cea.12022; PMID: 23414540
  • Burger JA, Quiroga MP, Hartmann E, Bürkle A, Wierda WG, Keating MJ, Rosenwald A. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 2009; 113:3050 - 8; http://dx.doi.org/10.1182/blood-2008-07-170415; PMID: 19074730
  • O’Hayre M, Salanga CL, Handel TM, Allen SJ. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J 2008; 409:635 - 49; http://dx.doi.org/10.1042/BJ20071493; PMID: 18177271
  • Moll NM, Ransohoff RM. CXCL12 and CXCR4 in bone marrow physiology. Expert Rev Hematol 2010; 3:315 - 22; http://dx.doi.org/10.1586/ehm.10.16; PMID: 21082982
  • Möhle R, Failenschmid C, Bautz F, Kanz L. Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 1999; 13:1954 - 9; http://dx.doi.org/10.1038/sj.leu.2401602; PMID: 10602415
  • Majid A, Lin TT, Best G, Fishlock K, Hewamana S, Pratt G, Yallop D, Buggins AG, Wagner S, Kennedy BJ, et al. CD49d is an independent prognostic marker that is associated with CXCR4 expression in CLL. Leuk Res 2011; 35:750 - 6; http://dx.doi.org/10.1016/j.leukres.2010.10.022; PMID: 21093051
  • Patten PE, Buggins AG, Richards J, Wotherspoon A, Salisbury J, Mufti GJ, Hamblin TJ, Devereux S. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 2008; 111:5173 - 81; http://dx.doi.org/10.1182/blood-2007-08-108605; PMID: 18326821
  • Vlad A, Deglesne PA, Letestu R, Saint-Georges S, Chevallier N, Baran-Marszak F, Varin-Blank N, Ajchenbaum-Cymbalista F, Ledoux D. Down-regulation of CXCR4 and CD62L in chronic lymphocytic leukemia cells is triggered by B-cell receptor ligation and associated with progressive disease. Cancer Res 2009; 69:6387 - 95; http://dx.doi.org/10.1158/0008-5472.CAN-08-4750; PMID: 19654311
  • Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C, Cao F, Niekro W, Kempe T, Henning KA, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res 2013; 19:357 - 66; http://dx.doi.org/10.1158/1078-0432.CCR-12-2333; PMID: 23213054
  • Burger JA. Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting. Semin Cancer Biol 2010; 20:424 - 30; http://dx.doi.org/10.1016/j.semcancer.2010.09.005; PMID: 20883788
  • Schols D, Struyf S, Van Damme J, Esté JA, Henson G, De Clercq E. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 1997; 186:1383 - 8; http://dx.doi.org/10.1084/jem.186.8.1383; PMID: 9334378
  • Bandera A, Verga L, Perseghin P, Incontri A, Pioltelli PE, Gori A. Use of CXCR4-antagonist for haematopoietic stem cell mobilization in HIV-infected patients with haematological malignancies. AIDS 2013; 27:1037 - 9; http://dx.doi.org/10.1097/QAD.0b013e32835ecbcd; PMID: 23698069
  • Zhang WB, Navenot JM, Haribabu B, Tamamura H, Hiramatu K, Omagari A, Pei G, Manfredi JP, Fujii N, Broach JR, et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. J Biol Chem 2002; 277:24515 - 21; http://dx.doi.org/10.1074/jbc.M200889200; PMID: 11923301
  • Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, Penfold ME, Sunshine MJ, Littman DR, Kuo CJ, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203:2201 - 13; http://dx.doi.org/10.1084/jem.20052144; PMID: 16940167
  • Donzella GA, Schols D, Lin SW, Esté JA, Nagashima KA, Maddon PJ, Allaway GP, Sakmar TP, Henson G, De Clercq E, et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 1998; 4:72 - 7; http://dx.doi.org/10.1038/nm0198-072; PMID: 9427609
  • Burger JA, Stewart DJ. CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs 2009; 18:481 - 90; http://dx.doi.org/10.1517/13543780902804249; PMID: 19335276
  • Andritsos LA, Byrd JC, Hewes B, Kipps TJ, Johns D, Burger JA. Preliminary results from a phase I/II dose escalation study to determine the maximum tolerated from a phase I/II dose escalation study to determine the maximum tolerated chronic lymphocytic leukemia. Haematologica 2010; 95:Abstract 0772
  • Dal Bo M, Bomben R, Zucchetto A, Del Poeta G, Gaidano G, Deaglio S, Efremov DG, Gattei V. Microenvironmental interactions in chronic lymphocytic leukemia: hints for pathogenesis and identification of targets for rational therapy. Curr Pharm Des 2012; 18:3323 - 34; http://dx.doi.org/10.2174/138161212801227078; PMID: 22591383
  • Kostareli E, Gounari M, Agathangelidis A, Stamatopoulos K. Immunoglobulin gene repertoire in chronic lymphocytic leukemia: insight into antigen selection and microenvironmental interactions. Mediterr J Hematol Infect Dis 2012; 4:e2012052; http://dx.doi.org/10.4084/mjhid.2012.052; PMID: 22973496
  • Mraz M, Kipps TJ. MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54:1836 - 9; http://dx.doi.org/10.3109/10428194.2013.796055; PMID: 23597135
  • Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114:3367 - 75; http://dx.doi.org/10.1182/blood-2009-06-225326; PMID: 19636060
  • Efremov DG, Gobessi S, Longo PG. Signaling pathways activated by antigen-receptor engagement in chronic lymphocytic leukemia B-cells. Autoimmun Rev 2007; 7:102 - 8; http://dx.doi.org/10.1016/j.autrev.2007.02.021; PMID: 18035318
  • Kenkre VP, Kahl BS. The future of B-cell lymphoma therapy: the B-cell receptor and its downstream pathways. Curr Hematol Malig Rep 2012; 7:216 - 20; http://dx.doi.org/10.1007/s11899-012-0127-0; PMID: 22688757
  • Hoellenriegel J, Coffey GP, Sinha U, Pandey A, Sivina M, Ferrajoli A, Ravandi F, Wierda WG, O’Brien S, Keating MJ, et al. Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress chronic lymphocytic leukemia B-cell activation and migration. Leukemia 2012; 26:1576 - 83; http://dx.doi.org/10.1038/leu.2012.24; PMID: 22362000
  • Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, Keating MJ, O’Brien S, Chiorazzi N, Burger JA. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119:1182 - 9; http://dx.doi.org/10.1182/blood-2011-10-386417; PMID: 22180443
  • Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, Giese N, O’Brien S, Yu A, Miller LL, et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118:3603 - 12; http://dx.doi.org/10.1182/blood-2011-05-352492; PMID: 21803855
  • Burger JA. Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Curr Opin Oncol 2012; 24:643 - 9; http://dx.doi.org/10.1097/CCO.0b013e3283589950; PMID: 22960555
  • de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, Pals ST, Spaargaren M. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 2012; 119:2590 - 4; http://dx.doi.org/10.1182/blood-2011-11-390989; PMID: 22279054
  • Buchner M, Baer C, Prinz G, Dierks C, Burger M, Zenz T, Stilgenbauer S, Jumaa H, Veelken H, Zirlik K. Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. Blood 2010; 115:4497 - 506; http://dx.doi.org/10.1182/blood-2009-07-233692; PMID: 20335218
  • Fruman DA, Rommel C. PI3Kδ inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 2011; 1:562 - 72; http://dx.doi.org/10.1158/2159-8290.CD-11-0249; PMID: 22586681
  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11:329 - 41; http://dx.doi.org/10.1038/nrm2882; PMID: 20379207
  • Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, Jones J, Andritsos L, Puri KD, Lannutti BJ, et al. Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010; 116:2078 - 88; http://dx.doi.org/10.1182/blood-2010-02-271171; PMID: 20522708
  • Furman RR, Byrd JC, Brown JR, Coutre SE, Benson DM, Nina WJ et al. CAL-101, An Isoform-Selective Inhibitor of Phosphatidylinositol 3-Kinase P110d Demonstrates Clinical Activity and Pharmacodynamic Efects in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia. 52nd American society of hematology,2010, 116 Abstract.
  • Coutre SE, Leonard JP, Furman RR, Barrientos J C, de Vos S, Flinn IW, et al. Combinations of the Selective Phosphatidylinositol 3-Kinase-Delta (PI3Kdelta) Inhibitor GS–1101 (CAL-101) with Rituximab and/or Bendamustine Are Tolerable and Highly Active in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL): Results From a Phase I Study. 54th American society of hematology, 2012, 191 Abstract.
  • Davids MS, Brown JR. Targeting the B cell receptor pathway in chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53:2362 - 70; http://dx.doi.org/10.3109/10428194.2012.695781; PMID: 22616724
  • Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A 2010; 107:13075 - 80; http://dx.doi.org/10.1073/pnas.1004594107; PMID: 20615965
  • Kil LP, de Bruijn MJ, van Hulst JA, Langerak AW, Yuvaraj S, Hendriks RW. Bruton’s tyrosine kinase mediated signaling enhances leukemogenesis in a mouse model for chronic lymphocytic leukemia. Am J Blood Res 2013; 3:71 - 83; PMID: 23359016
  • Davids MS, Burger JA. Cell trafficking in chronic lymphocytic leukemia. Open J Hematol 2012; 3; S1 http://dx.doi.org/10.13055/ojhmt_3_S1_03.120221; PMID: 22844583
  • Hoellenriegel J, O'Brien S, Keating MJ. In vivo inhibition of BCR activation in high-risk CLL patients on therapy with bruton’s tyrosine kinase inhibitor ibrutinib: Correlative studies from an ongoing phase 2 clinical trial. 54th American society of hematology, 2012,186 Abstract.
  • Brown JR. Ibrutinib (PCI-32765), the first BTK (Bruton’s tyrosine kinase) inhibitor in clinical trials. Curr Hematol Malig Rep 2013; 8:1 - 6; http://dx.doi.org/10.1007/s11899-012-0147-9; PMID: 23296407
  • Jan A. Burger, Michael J. Keating, William G. Wierda, et al. The Btk Inhibitor Ibrutinib (PCI-32765) in Combination with Rituximab Is Well Tolerated and Displays Profound Activity in High-Risk Chronic Lymphocytic Leukemia (CLL) Patients, 54th American society of hematology, 2012, 187 Abstract
  • Semichon M, Merle-Béral H, Lang V, Bismuth G. Normal Syk protein level but abnormal tyrosine phosphorylation in B-CLL cells. Leukemia 1997; 11:1921 - 8; http://dx.doi.org/10.1038/sj.leu.2400832; PMID: 9369427
  • Gobessi S, Laurenti L, Longo PG, Carsetti L, Berno V, Sica S, Leone G, Efremov DG. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 2009; 23:686 - 97; http://dx.doi.org/10.1038/leu.2008.346; PMID: 19092849
  • Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M, Qu K, Herlaar E, Lau A, Young C, et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther 2006; 319:998 - 1008; http://dx.doi.org/10.1124/jpet.106.109058; PMID: 16946104
  • Herman SE, Barr PM, McAuley EM, Delong Liu, Friedberg JW, Adrian Wiestner. Fostamatinib Inhibits BCR Signaling, and Reduces Tumor Cell Activation and Proliferation in Patients with Relapsed Refractory Chronic Lymphocytic Leukemia. 54th American society of hematology, 2012, 2882 Abstract.
  • Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, Schaefer-Cutillo J, De Vos S, Sinha R, Leonard JP, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115:2578 - 85; http://dx.doi.org/10.1182/blood-2009-08-236471; PMID: 19965662
  • Crane E, List A. Lenalidomide: an immunomodulatory drug. Future Oncol 2005; 1:575 - 83; http://dx.doi.org/10.2217/14796694.1.5.575; PMID: 16556034
  • Menzel T, Rahman Z, Calleja E, White K, Wilson EL, Wieder R, Gabrilove J. Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic lymphocytic leukemia and is associated with resistance to fludarabine. Blood 1996; 87:1056 - 63; PMID: 8562930
  • Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M, Toh CH. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 2000; 96:3181 - 7; PMID: 11050001
  • Herman SE, Lapalombella R, Gordon AL, Ramanunni A, Blum KA, Jones J, Zhang X, Lannutti BJ, Puri KD, Muthusamy N, et al. The role of phosphatidylinositol 3-kinase-δ in the immunomodulatory effects of lenalidomide in chronic lymphocytic leukemia. Blood 2011; 117:4323 - 7; http://dx.doi.org/10.1182/blood-2010-11-315705; PMID: 21378270
  • Chen CI, Bergsagel PL, Paul H, Xu W, Lau A, Dave N, Kukreti V, Wei E, Leung-Hagesteijn C, Li ZH, et al. Single-agent lenalidomide in the treatment of previously untreated chronic lymphocytic leukemia. J Clin Oncol 2011; 29:1175 - 81; http://dx.doi.org/10.1200/JCO.2010.29.8133; PMID: 21189385
  • Badoux XC, Keating MJ, Wen S, Wierda WG, O’Brien SM, Faderl S, Sargent R, Burger JA, Ferrajoli A. Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 2013; 31:584 - 91; http://dx.doi.org/10.1200/JCO.2012.42.8623; PMID: 23270003
  • Rini BI. Sorafenib. Expert Opin Pharmacother 2006; 7:453 - 61; http://dx.doi.org/10.1517/14656566.7.4.453; PMID: 16503817
  • Messmer D, Fecteau JF, O’Hayre M, Bharati IS, Handel TM, Kipps TJ. Chronic lymphocytic leukemia cells receive RAF-dependent survival signals in response to CXCL12 that are sensitive to inhibition by sorafenib. Blood 2011; 117:882 - 9; http://dx.doi.org/10.1182/blood-2010-04-282400; PMID: 21079155
  • Lindauer M, Hochhaus A. Dasatinib. Recent Results Cancer Res 2010; 184:83 - 102; http://dx.doi.org/10.1007/978-3-642-01222-8_7; PMID: 20072833
  • McCaig AM, Cosimo E, Leach MT, Michie AM. Dasatinib inhibits B cell receptor signalling in chronic lymphocytic leukaemia but novel combination approaches are required to overcome additional pro-survival microenvironmental signals. Br J Haematol 2011; 153:199 - 211; http://dx.doi.org/10.1111/j.1365-2141.2010.08507.x; PMID: 21352196
  • McCaig AM, Cosimo E, Leach MT, Michie AM. Dasatinib inhibits CXCR4 signaling in chronic lymphocytic leukaemia cells and impairs migration towards CXCL12. PLoS One 2012; 7:e48929; http://dx.doi.org/10.1371/journal.pone.0048929; PMID: 23133664
  • Amrein PC, Attar EC, Takvorian T, Hochberg EP, Ballen KK, Leahy KM, Fisher DC, Lacasce AS, Jacobsen ED, Armand P, et al. Phase II study of dasatinib in relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res 2011; 17:2977 - 86; http://dx.doi.org/10.1158/1078-0432.CCR-10-2879; PMID: 21402714

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.