6,911
Views
174
CrossRef citations to date
0
Altmetric
Review

The emerging roles of ARID1A in tumor suppression

, &
Pages 655-664 | Received 12 Feb 2014, Accepted 03 Mar 2014, Published online: 11 Mar 2014

References

  • Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011; 21:396 - 420; http://dx.doi.org/10.1038/cr.2011.32; PMID: 21358755
  • Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150:12 - 27; http://dx.doi.org/10.1016/j.cell.2012.06.013; PMID: 22770212
  • Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009; 78:273 - 304; http://dx.doi.org/10.1146/annurev.biochem.77.062706.153223; PMID: 19355820
  • Shain AH, Pollack JR. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One 2013; 8:e55119; http://dx.doi.org/10.1371/journal.pone.0055119; PMID: 23355908
  • Dallas PB, Pacchione S, Wilsker D, Bowrin V, Kobayashi R, Moran E. The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity. Mol Cell Biol 2000; 20:3137 - 46; http://dx.doi.org/10.1128/MCB.20.9.3137-3146.2000; PMID: 10757798
  • Wilsker D, Patsialou A, Zumbrun SD, Kim S, Chen Y, Dallas PB, Moran E. The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res 2004; 32:1345 - 53; http://dx.doi.org/10.1093/nar/gkh277; PMID: 14982958
  • Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387:733 - 6; http://dx.doi.org/10.1038/42750; PMID: 9192902
  • Wilson BG, Roberts CWM. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 2011; 11:481 - 92; http://dx.doi.org/10.1038/nrc3068; PMID: 21654818
  • Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene 2009; 28:1653 - 68; http://dx.doi.org/10.1038/onc.2009.4; PMID: 19234488
  • Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling. Trends Mol Med 2007; 13:373 - 80; http://dx.doi.org/10.1016/j.molmed.2007.07.004; PMID: 17822959
  • Wu JI, Lessard J, Crabtree GR. Understanding the words of chromatin regulation. Cell 2009; 136:200 - 6; http://dx.doi.org/10.1016/j.cell.2009.01.009; PMID: 19167321
  • Ho L, Crabtree GR. Chromatin remodelling during development. Nature 2010; 463:474 - 84; http://dx.doi.org/10.1038/nature08911; PMID: 20110991
  • Flores-Alcantar A, Gonzalez-Sandoval A, Escalante-Alcalde D, Lomelí H. Dynamics of expression of ARID1A and ARID1B subunits in mouse embryos and in cells during the cell cycle. Cell Tissue Res 2011; 345:137 - 48; http://dx.doi.org/10.1007/s00441-011-1182-x; PMID: 21647563
  • Nagl NG Jr., Wang X, Patsialou A, Van Scoy M, Moran E. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J 2007; 26:752 - 63; http://dx.doi.org/10.1038/sj.emboj.7601541; PMID: 17255939
  • Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK, Wang W. A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol 2000; 20:8879 - 88; http://dx.doi.org/10.1128/MCB.20.23.8879-8888.2000; PMID: 11073988
  • Inoue H, Furukawa T, Giannakopoulos S, Zhou S, King DS, Tanese N. Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors. J Biol Chem 2002; 277:41674 - 85; http://dx.doi.org/10.1074/jbc.M205961200; PMID: 12200431
  • Guan B, Wang TL, Shih IeM. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res 2011; 71:6718 - 27; http://dx.doi.org/10.1158/0008-5472.CAN-11-1562; PMID: 21900401
  • Chandler RL, Brennan J, Schisler JC, Serber D, Patterson C, Magnuson T. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol 2013; 33:265 - 80; http://dx.doi.org/10.1128/MCB.01008-12; PMID: 23129809
  • Guan B, Gao M, Wu C-H, Wang T-L, Shih IeM. Functional analysis of in-frame indel ARID1A mutations reveals new regulatory mechanisms of its tumor suppressor functions. Neoplasia 2012; 14:986 - 93; PMID: 23097632
  • Bagchi A, Mills AA. The quest for the 1p36 tumor suppressor. Cancer Res 2008; 68:2551 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-07-2095; PMID: 18413720
  • Wang X, Nagl NG Jr., Flowers S, Zweitzig D, Dallas PB, Moran E. Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer 2004; 112:636 - 42; http://dx.doi.org/10.1002/ijc.20450; PMID: 15382044
  • Huang J, Zhao Y-L, Li Y, Fletcher JA, Xiao S. Genomic and functional evidence for an ARID1A tumor suppressor role. Genes Chromosomes Cancer 2007; 46:745 - 50; http://dx.doi.org/10.1002/gcc.20459; PMID: 17492758
  • Jones S, Wang T-L, Shih IeM, Mao T-L, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr., Vogelstein B, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330:228 - 31; http://dx.doi.org/10.1126/science.1196333; PMID: 20826764
  • Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010; 363:1532 - 43; http://dx.doi.org/10.1056/NEJMoa1008433; PMID: 20942669
  • Maeda D, Mao T-L, Fukayama M, Nakagawa S, Yano T, Taketani Y, Shih IeM. Clinicopathological Significance of Loss of ARID1A Immunoreactivity in Ovarian Clear Cell Carcinoma. Int J Mol Sci 2010; 11:5120 - 8; http://dx.doi.org/10.3390/ijms11125120; PMID: 21614196
  • Huang H-N, Lin M-C, Huang W-C, Chiang Y-C, Kuo K-T. Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations and ZNF217 amplification in ovarian clear cell carcinoma. Mod Pathol 2013; forthcoming http://dx.doi.org/10.1038/modpathol.2013.216; PMID: 24336158
  • Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. PIK3CA mutations and loss of ARID1A protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma. Virchows Arch 2012; 460:77 - 87; http://dx.doi.org/10.1007/s00428-011-1169-8; PMID: 22120431
  • Lowery WJ, Schildkraut JM, Akushevich L, Bentley R, Marks JR, Huntsman D, Berchuck A. Loss of ARID1A-associated protein expression is a frequent event in clear cell and endometrioid ovarian cancers. Int J Gynecol Cancer 2012; 22:9 - 14; http://dx.doi.org/10.1097/IGC.0b013e318231f140; PMID: 22193641
  • Wu C-H, Mao T-L, Vang R, Ayhan A, Wang T-L, Kurman RJ, Shih IeM. Endocervical-type mucinous borderline tumors are related to endometrioid tumors based on mutation and loss of expression of ARID1A. Int J Gynecol Pathol 2012; 31:297 - 303; http://dx.doi.org/10.1097/PGP.0b013e31823f8482; PMID: 22653341
  • Liang H, Cheung LWT, Li J, Ju Z, Yu S, Stemke-Hale K, Dogruluk T, Lu Y, Liu X, Gu C, et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res 2012; 22:2120 - 9; http://dx.doi.org/10.1101/gr.137596.112; PMID: 23028188
  • Guan B, Mao T-L, Panuganti PK, Kuhn E, Kurman RJ, Maeda D, Chen E, Jeng Y-M, Wang T-L, Shih IeM. Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol 2011; 35:625 - 32; http://dx.doi.org/10.1097/PAS.0b013e318212782a; PMID: 21412130
  • Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, et al, Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 2013; 497:67 - 73; http://dx.doi.org/10.1038/nature12113; PMID: 23636398
  • Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B, et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol 2011; 224:328 - 33; http://dx.doi.org/10.1002/path.2911; PMID: 21590771
  • Rahman M, Nakayama K, Rahman MT, Katagiri H, Katagiri A, Ishibashi T, Ishikawa M, Iida K, Miyazaki K. Clinicopathologic analysis of loss of AT-rich interactive domain 1A expression in endometrial cancer. Hum Pathol 2013; 44:103 - 9; http://dx.doi.org/10.1016/j.humpath.2012.04.021; PMID: 22939958
  • Werner HMJ, Berg A, Wik E, Birkeland E, Krakstad C, Kusonmano K, Petersen K, Kalland KH, Oyan AM, Akslen LA, et al. ARID1A loss is prevalent in endometrial hyperplasia with atypia and low-grade endometrioid carcinomas. Mod Pathol 2013; 26:428 - 34; http://dx.doi.org/10.1038/modpathol.2012.174; PMID: 23080032
  • Fadare O, Renshaw IL, Liang SX. Does the Loss of ARID1A (BAF-250a) Expression in Endometrial Clear Cell Carcinomas Have Any Clinicopathologic Significance? A Pilot Assessment. J Cancer 2012; 3:129 - 36; http://dx.doi.org/10.7150/jca.4140; PMID: 22408686
  • Fadare O, Gwin K, Desouki MM, Crispens MA, Jones HW 3rd, Khabele D, Liang SX, Zheng W, Mohammed K, Hecht JL, et al. The clinicopathologic significance of p53 and BAF-250a (ARID1A) expression in clear cell carcinoma of the endometrium. Mod Pathol 2013; 26:1101 - 10; http://dx.doi.org/10.1038/modpathol.2013.35; PMID: 23524907
  • Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Ishikawa M, Ishibashi T, Iida K, Otsuki Y, Nakayama S, et al. Frequent loss of tumor suppressor ARID1A protein expression in adenocarcinomas/adenosquamous carcinomas of the uterine cervix. Int J Gynecol Cancer 2012; 22:208 - 12; http://dx.doi.org/10.1097/IGC.0b013e3182313d78; PMID: 22274316
  • Cho H, Kim JS-Y, Chung H, Perry C, Lee H, Kim J-H. Loss of ARID1A/BAF250a expression is linked to tumor progression and adverse prognosis in cervical cancer. Hum Pathol 2013; 44:1365 - 74; http://dx.doi.org/10.1016/j.humpath.2012.11.007; PMID: 23427874
  • Chong IY, Cunningham D, Barber LJ, Campbell J, Chen L, Kozarewa I, Fenwick K, Assiotis I, Guettler S, Garcia-Murillas I, et al. The genomic landscape of oesophagogastric junctional adenocarcinoma. J Pathol 2013; 231:301 - 10; PMID: 24308032
  • Streppel MM, Lata S, DelaBastide M, Montgomery EA, Wang JS, Canto MI, Macgregor-Das AM, Pai S, Morsink FHM, Offerhaus GJ, et al. Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett’s esophagus. Oncogene 2014; 33:347 - 57; http://dx.doi.org/10.1038/onc.2012.586; PMID: 23318448
  • Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, Bandla S, Imamura Y, Schumacher SE, Shefler E, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet 2013; 45:478 - 86; http://dx.doi.org/10.1038/ng.2591; PMID: 23525077
  • Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, Chan TL, Kan Z, Chan ASY, Tsui WY, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 2011; 43:1219 - 23; http://dx.doi.org/10.1038/ng.982; PMID: 22037554
  • Jones S, Li M, Parsons DW, Zhang X, Wesseling J, Kristel P, Schmidt MK, Markowitz S, Yan H, Bigner D, et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat 2012; 33:100 - 3; http://dx.doi.org/10.1002/humu.21633; PMID: 22009941
  • Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 2012; 44:570 - 4; http://dx.doi.org/10.1038/ng.2246; PMID: 22484628
  • Abe H, Maeda D, Hino R, Otake Y, Isogai M, Ushiku AS, Matsusaka K, Kunita A, Ushiku T, Uozaki H, et al. ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein-Barr virus infection and microsatellite instability. Virchows Arch 2012; 461:367 - 77; http://dx.doi.org/10.1007/s00428-012-1303-2; PMID: 22915242
  • Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487:330 - 7; http://dx.doi.org/10.1038/nature11252; PMID: 22810696
  • Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44:694 - 8; http://dx.doi.org/10.1038/ng.2256; PMID: 22561517
  • Huang J, Deng Q, Wang Q, Li K-Y, Dai J-H, Li N, Zhu Z-D, Zhou B, Liu X-Y, Liu R-F, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet 2012; 44:1117 - 21; http://dx.doi.org/10.1038/ng.2391; PMID: 22922871
  • Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya F, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2012; 44:760 - 4; http://dx.doi.org/10.1038/ng.2291; PMID: 22634756
  • Chan-On W, Nairismägi M-L, Ong CK, Lim WK, Dima S, Pairojkul C, Lim KH, McPherson JR, Cutcutache I, Heng HL, et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet 2013; 45:1474 - 8; http://dx.doi.org/10.1038/ng.2806; PMID: 24185513
  • Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, Niknafs N, Guthrie VB, Maitra A, Argani P, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 2013; 45:1470 - 3; http://dx.doi.org/10.1038/ng.2813; PMID: 24185509
  • Birnbaum DJ, Adélaïde J, Mamessier E, Finetti P, Lagarde A, Monges G, Viret F, Gonçalvès A, Turrini O, Delpero J-R, et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 2011; 50:456 - 65; http://dx.doi.org/10.1002/gcc.20870; PMID: 21412932
  • Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490:61 - 70; http://dx.doi.org/10.1038/nature11412; PMID: 23000897
  • Mamo A, Cavallone L, Tuzmen S, Chabot C, Ferrario C, Hassan S, Edgren H, Kallioniemi O, Aleynikova O, Przybytkowski E, et al. An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer. Oncogene 2012; 31:2090 - 100; http://dx.doi.org/10.1038/onc.2011.386; PMID: 21892209
  • Zhang X, Zhang Y, Yang Y, Niu M, Sun S, Ji H, Ma Y, Yao G, Jiang Y, Shan M, et al. Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance. Cancer Epidemiol 2012; 36:288 - 93; http://dx.doi.org/10.1016/j.canep.2011.07.006; PMID: 21889920
  • Guo G, Sun X, Chen C, Wu S, Huang P, Li Z, Dean M, Huang Y, Jia W, Zhou Q, et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet 2013; 45:1459 - 63; http://dx.doi.org/10.1038/ng.2798; PMID: 24121792
  • Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, Wu R, Chen C, Li X, Zhou L, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 2011; 43:875 - 8; http://dx.doi.org/10.1038/ng.907; PMID: 21822268
  • Balbás-Martínez C, Rodríguez-Pinilla M, Casanova A, Domínguez O, Pisano DG, Gómez G, Lloreta J, Lorente JA, Malats N, Real FX. ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors. PLoS One 2013; 8:e62483; http://dx.doi.org/10.1371/journal.pone.0062483; PMID: 23650517
  • Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat J-P, Nickerson E, Auclair D, Li L, Place C, et al. A landscape of driver mutations in melanoma. Cell 2012; 150:251 - 63; http://dx.doi.org/10.1016/j.cell.2012.06.024; PMID: 22817889
  • Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, Ivanova E, Watson IR, Nickerson E, Ghosh P, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012; 485:502 - 6; PMID: 22622578
  • Giulino-Roth L, Wang K, MacDonald TY, Mathew S, Tam Y, Cronin MT, Palmer G, Lucena-Silva N, Pedrosa F, Pedrosa M, et al. Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood 2012; 120:5181 - 4; http://dx.doi.org/10.1182/blood-2012-06-437624; PMID: 23091298
  • Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 2012; 367:826 - 33; http://dx.doi.org/10.1056/NEJMoa1200710; PMID: 22931316
  • Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150:1107 - 20; http://dx.doi.org/10.1016/j.cell.2012.08.029; PMID: 22980975
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489:519 - 25; http://dx.doi.org/10.1038/nature11404; PMID: 22960745
  • Sausen M, Leary RJ, Jones S, Wu J, Reynolds CP, Liu X, Blackford A, Parmigiani G, Diaz LA Jr., Papadopoulos N, et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet 2013; 45:12 - 7; http://dx.doi.org/10.1038/ng.2493; PMID: 23202128
  • Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010; 363:1532 - 43; http://dx.doi.org/10.1056/NEJMoa1008433; PMID: 20942669
  • Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A, Pollack JR. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci U S A 2012; 109:E252 - 9; http://dx.doi.org/10.1073/pnas.1114817109; PMID: 22233809
  • Cornen S, Adelaide J, Bertucci F, Finetti P, Guille A, Birnbaum DJ, Birnbaum D, Chaffanet M. Mutations and deletions of ARID1A in breast tumors. Oncogene 2012; 31:4255 - 6; http://dx.doi.org/10.1038/onc.2011.598; PMID: 22249247
  • Lichner Z, Scorilas A, White NMA, Girgis AH, Rotstein L, Wiegand KC, Latif A, Chow C, Huntsman D, Yousef GM. The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma. Am J Pathol 2013; 182:1163 - 70; http://dx.doi.org/10.1016/j.ajpath.2013.01.007; PMID: 23416164
  • Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol 2012; 25:615 - 24; http://dx.doi.org/10.1038/modpathol.2011.189; PMID: 22157930
  • Ayhan A, Mao T-L, Seckin T, Wu C-H, Guan B, Ogawa H, Futagami M, Mizukami H, Yokoyama Y, Kurman RJ, et al. Loss of ARID1A expression is an early molecular event in tumor progression from ovarian endometriotic cyst to clear cell and endometrioid carcinoma. Int J Gynecol Cancer 2012; 22:1310 - 5; http://dx.doi.org/10.1097/IGC.0b013e31826b5dcc; PMID: 22976498
  • Mao T-L, Ardighieri L, Ayhan A, Kuo K-T, Wu C-H, Wang T-L, Shih IeM. Loss of ARID1A expression correlates with stages of tumor progression in uterine endometrioid carcinoma. Am J Surg Pathol 2013; 37:1342 - 8; http://dx.doi.org/10.1097/PAS.0b013e3182889dc3; PMID: 24076775
  • Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386:761 - 3, 763; http://dx.doi.org/10.1038/386761a0; PMID: 9126728
  • Wang D-D, Chen Y-B, Pan K, Wang W, Chen S-P, Chen J-G, Zhao J-J, Lv L, Pan Q-Z, Li Y-Q, et al. Decreased expression of the ARID1A gene is associated with poor prognosis in primary gastric cancer. PLoS One 2012; 7:e40364; http://dx.doi.org/10.1371/journal.pone.0040364; PMID: 22808142
  • Nagl NG Jr., Patsialou A, Haines DS, Dallas PB, Beck GR Jr., Moran E. The p270 (ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal cell cycle arrest. Cancer Res 2005; 65:9236 - 44; http://dx.doi.org/10.1158/0008-5472.CAN-05-1225; PMID: 16230384
  • Nagl NG Jr., Zweitzig DR, Thimmapaya B, Beck GR Jr., Moran E. The c-myc gene is a direct target of mammalian SWI/SNF-related complexes during differentiation-associated cell cycle arrest. Cancer Res 2006; 66:1289 - 93; http://dx.doi.org/10.1158/0008-5472.CAN-05-3427; PMID: 16452181
  • Lou Z, Minter-Dykhouse K, Chen J. BRCA1 participates in DNA decatenation. Nat Struct Mol Biol 2005; 12:589 - 93; http://dx.doi.org/10.1038/nsmb953; PMID: 15965487
  • Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, Pfister S, Cho Y-J, Zhao K, Crabtree GR. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 2013; 497:624 - 7; http://dx.doi.org/10.1038/nature12146; PMID: 23698369
  • Lee H-S, Park J-H, Kim S-J, Kwon S-J, Kwon J. A cooperative activation loop among SWI/SNF, γ-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J 2010; 29:1434 - 45; http://dx.doi.org/10.1038/emboj.2010.27; PMID: 20224553
  • Park J-H, Park E-J, Lee H-S, Kim S-J, Hur S-K, Imbalzano AN, Kwon J. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J 2006; 25:3986 - 97; http://dx.doi.org/10.1038/sj.emboj.7601291; PMID: 16932743
  • Gong F, Fahy D, Liu H, Wang W, Smerdon MJ. Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage. Cell Cycle 2008; 7:1067 - 74; http://dx.doi.org/10.4161/cc.7.8.5647; PMID: 18414052
  • Zhao Q, Wang Q-E, Ray A, Wani G, Han C, Milum K, Wani AA. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J Biol Chem 2009; 284:30424 - 32; http://dx.doi.org/10.1074/jbc.M109.044982; PMID: 19740755
  • Kothandapani A, Gopalakrishnan K, Kahali B, Reisman D, Patrick SM. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity. Exp Cell Res 2012; 318:1973 - 86; http://dx.doi.org/10.1016/j.yexcr.2012.06.011; PMID: 22721696
  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F, Shiekhattar R. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 2000; 102:257 - 65; http://dx.doi.org/10.1016/S0092-8674(00)00030-1; PMID: 10943845
  • Zhang L, Chen H, Gong M, Gong F. The chromatin remodeling protein BRG1 modulates BRCA1 response to UV irradiation by regulating ATR/ATM activation. Front Oncol 2013; 3:7; http://dx.doi.org/10.3389/fonc.2013.00007; PMID: 23346553
  • Peltomäki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 2003; 21:1174 - 9; http://dx.doi.org/10.1200/JCO.2003.04.060; PMID: 12637487
  • Allo G, Bernardini MQ, Wu R-C, Shih IeM, Kalloger S, Pollett A, Gilks CB, Clarke BA. ARID1A loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod Pathol 2014; 27:255 - 61; http://dx.doi.org/10.1038/modpathol.2013.144; PMID: 23887303
  • Bosse T, ter Haar NT, Seeber LM, v Diest PJ, Hes FJ, Vasen HF, Nout RA, Creutzberg CL, Morreau H, Smit VT. Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations, TP53 and microsatellite instability in endometrial cancer. Mod Pathol 2013; 26:1525 - 35; http://dx.doi.org/10.1038/modpathol.2013.96; PMID: 23702729
  • Cajuso T, Hänninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R, Pitkänen E, Ristolainen H, Kaasinen E, Taipale M, et al. Exome sequencing reveals frequent inactivating mutations in ARID1A,ARID1B,ARID2, and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer 2013; forthcoming PMID: 24382590
  • Yuen ST, Chung LP, Leung SY, Luk IS, Chan SY, Ho J. In situ detection of Epstein-Barr virus in gastric and colorectal adenocarcinomas. Am J Surg Pathol 1994; 18:1158 - 63; http://dx.doi.org/10.1097/00000478-199411000-00010; PMID: 7943537
  • Jass JR. HNPCC and sporadic MSI-H colorectal cancer: a review of the morphological similarities and differences. Fam Cancer 2004; 3:93 - 100; http://dx.doi.org/10.1023/B:FAME.0000039849.86008.b7; PMID: 15340259
  • dos Santos NR, Seruca R, Constância M, Seixas M, Sobrinho-Simões M. Microsatellite instability at multiple loci in gastric carcinoma: clinicopathologic implications and prognosis. Gastroenterology 1996; 110:38 - 44; http://dx.doi.org/10.1053/gast.1996.v110.pm8536886; PMID: 8536886
  • Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X, Hinkle G, Boehm JS, Beroukhim R, Weir BA, et al. Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci U S A 2008; 105:20380 - 5; http://dx.doi.org/10.1073/pnas.0810485105; PMID: 19091943
  • Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 2002; 71:907 - 20; PMID: 12050175
  • Krig SR, Miller JK, Frietze S, Beckett LA, Neve RM, Farnham PJ, Yaswen PI, Sweeney CA. ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells. Oncogene 2010; 29:5500 - 10; http://dx.doi.org/10.1038/onc.2010.289; PMID: 20661224
  • McConechy MK, Ding J, Senz J, Yang W, Melnyk N, Tone AA, Prentice LM, Wiegand KC, McAlpine JN, Shah SP, et al. Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod Pathol 2014; 27:128 - 34; http://dx.doi.org/10.1038/modpathol.2013.107; PMID: 23765252
  • Wu R-C, Ayhan A, Maeda D, Kim K-R, Clarke BA, Shaw P, Chui MH, Rosen B, Shih IeM, Wang T-L. Frequent somatic mutations of the telomerase reverse transcriptase promoter in ovarian clear cell carcinoma but not in other major types of gynaecological malignancy. J Pathol 2014; 232:473 - 81; http://dx.doi.org/10.1002/path.4315; PMID: 24338723
  • Helming KC, Wang X, Wilson BG, Vazquez F, Haswell JR, Manchester HE, Kim Y, Kryukov GV, Ghandi M, Aguirre AJ, et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med 2014; 20:251 - 4; http://dx.doi.org/10.1038/nm.3480; PMID: 24562383
  • Beghelli S, de Manzoni G, Barbi S, Tomezzoli A, Roviello F, Di Gregorio C, Vindigni C, Bortesi L, Parisi A, Saragoni L, et al. Microsatellite instability in gastric cancer is associated with better prognosis in only stage II cancers. Surgery 2006; 139:347 - 56; http://dx.doi.org/10.1016/j.surg.2005.08.021; PMID: 16546499
  • Camargo MC, Kim W-H, Chiaravalli AM, Kim K-M, Corvalan AH, Matsuo K, Yu J, Sung JJY, Herrera-Goepfert R, Meneses-Gonzalez F, et al. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 2014; 63:236 - 43; PMID: 23580779
  • Popovic R, Licht JD. Emerging epigenetic targets and therapies in cancer medicine. Cancer Discov 2012; 2:405 - 13; http://dx.doi.org/10.1158/2159-8290.CD-12-0076; PMID: 22588878

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.