2,036
Views
59
CrossRef citations to date
0
Altmetric
Extra Views

Network calisthenics

Control of E2F dynamics in cell cycle entry

, , , &
Pages 3086-3094 | Received 14 Jul 2011, Accepted 25 Jul 2011, Published online: 15 Sep 2011

References

  • Blow JJ, Dutta A. Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 2005; 6:476 - 486; PMID: 15928711; http://dx.doi.org/10.1038/nrm1663
  • Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 2007; 21:497 - 518; PMID: 17344412; http://dx.doi.org/10.1101/gad.1508907
  • Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 2010; 11:208 - 219; PMID: 20177396; http://dx.doi.org/10.1038/nrm2852
  • Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008; 319:1352 - 1355; PMID: 18323444; http://dx.doi.org/10.1126/science.1140735
  • Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell 1991; 65:1053 - 1061; PMID: 1828392; http://dx.doi.org/10.1016/0092-8674(91)90557-F
  • Bagchi S, Weinmann R, Raychaudhuri P. The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F. Cell 1991; 65:1063 - 1072; PMID: 1828393; http://dx.doi.org/10.1016/0092-8674(91)90558-G
  • Weintraub SJ, Prater CA, Dean DC. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 1992; 358:259 - 261; PMID: 1321348; http://dx.doi.org/10.1038/358259a0
  • Mudryj M, Hiebert SW, Nevins JR. A role for the adenovirus inducible E2F transcription factor in a proliferation dependent signal transduction pathway. EMBO J 1990; 9:2179 - 2184; PMID: 2141565
  • Thalmeier K, Synovzik H, Mertz R, Winnacker EL, Lipp M. Nuclear factor E2F mediates basic transcription and trans-activation by E1a of the human MYC promoter. Genes Dev 1989; 3:527 - 536; PMID: 2721961; http://dx.doi.org/10.1101/gad.3.4.527
  • Hiebert SW, Lipp M, Nevins JR. E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc Natl Acad Sci USA 1989; 86:3594 - 3598; PMID: 2524830; http://dx.doi.org/10.1073/pnas.86.10.3594
  • Johnson DG, Schwarz JK, Cress WD, Nevins JR. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 1993; 365:349 - 352; PMID: 8377827; http://dx.doi.org/10.1038/365349a0
  • Shan B, Lee WH. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 1994; 14:8166 - 8173; PMID: 7969153
  • Qin XQ, Livingston DM, Kaelin WG Jr, Adams PD. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994; 91:10918 - 10922; PMID: 7971984; http://dx.doi.org/10.1073/pnas.91.23.10918
  • Attwooll C, Denchi EL, Helin K. The E2F family: specific functions and overlapping interests. EMBO J 2004; 23:4709 - 4716; PMID: 15538380; http://dx.doi.org/10.1038/sj.emboj.7600481
  • Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002; 3:11 - 20; PMID: 11823794; http://dx.doi.org/10.1038/nrm714
  • Chong JL, Tsai SY, Sharma N, Opavsky R, Price R, Wu L, et al. E2f3a and E2f3b contribute to the control of cell proliferation and mouse development. Mol Cell Biol 2009; 29:414 - 424; PMID: 19015245; http://dx.doi.org/10.1128/MCB.01161-08
  • Chong JL, Wenzel PL, Saenz-Robles MT, Nair V, Ferrey A, Hagan JP, et al. E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 2009; 462:930 - 934; PMID: 20016602; http://dx.doi.org/10.1038/nature08677
  • DeGregori J, Johnson DG. Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr Mol Med 2006; 6:739 - 748; PMID: 17100600
  • Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet 2001; 10:699 - 703; PMID: 11257102; http://dx.doi.org/10.1093/hmg/10.7.699
  • Sears RC, Nevins JR. Signaling networks that link cell proliferation and cell fate. J Biol Chem 2002; 277:11617 - 11620; PMID: 11805123; http://dx.doi.org/10.1074/jbc.R100063200
  • Calzone L, Gelay A, Zinovyev A, Radvanyi F, Barillot E. A comprehensive modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol 2008; 4:173; PMID: 18319725; http://dx.doi.org/10.1038/msb.2008.7
  • Pardee AB. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci USA 1974; 71:1286 - 1290; PMID: 4524638; http://dx.doi.org/10.1073/pnas.71.4.1286
  • Yao G, Tan C, West M, Nevins JR, You L. Origin of bistability underlying mammalian cell cycle entry. Mol Syst Biol 2011; 7:485; PMID: 21525871; http://dx.doi.org/10.1038/msb.2011.19
  • Yao G, Lee TJ, Mori S, Nevins JR, You L. A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 2008; 10:476 - 482; PMID: 18364697; http://dx.doi.org/10.1038/ncb1711
  • Leung JY, Ehmann GL, Giangrande PH, Nevins JR. A role for Myc in facilitating transcription activation by E2F1. Oncogene 2008; 27:4172 - 4179; PMID: 18345030; http://dx.doi.org/10.1038/onc.2008.55
  • Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 1997; 387:422 - 426; PMID: 9163430; http://dx.doi.org/10.1038/387422a0
  • Kim S, Li Q, Dang CV, Lee LA. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci USA 2000; 97:11198 - 11202; PMID: 11005843; http://dx.doi.org/10.1073/pnas.200372597
  • Wong JV, Yao G, Nevins JR, You L. Viral-Mediated Noisy Gene Expression Reveals Biphasic E2f1 Response to MYC. Mol Cell 2011; 41:275 - 285; PMID: 21292160; http://dx.doi.org/10.1016/j.molcel.2011.01.014
  • Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, et al. A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 2003; 11:997 - 1008; PMID: 12718885; http://dx.doi.org/10.1016/S1097-2765(03)00099-6
  • Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 2000; 101:79 - 89; PMID: 10778858; http://dx.doi.org/10.1016/S0092-8674(00)80625-X
  • Mailand N, Diffley JF. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 2005; 122:915 - 926; PMID: 16153703; http://dx.doi.org/10.1016/j.cell.2005.08.013
  • Coverley D, Laman H, Laskey RA. Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol 2002; 4:523 - 528; PMID: 12080347; http://dx.doi.org/10.1038/ncb813
  • Kowalik TF, DeGregori J, Schwarz JK, Nevins JR. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol 1995; 69:2491 - 2500; PMID: 7884898
  • Hansen U, Owens L, Saxena UH. Transcription factors LSF and E2Fs: tandem cyclists driving G0 to S?. Cell Cycle 2009; 8:2146 - 2151; PMID: 19556876; http://dx.doi.org/10.4161/cc.8.14.9089
  • Santoni-Rugiu E, Falck J, Mailand N, Bartek J, Lukas J. Involvement of Myc activity in a G(1)/S-promoting mechanism parallel to the pRb/E2F pathway. Mol Cell Biol 2000; 20:3497 - 3509; PMID: 10779339
  • Timmers C, Sharma N, Opavsky R, Maiti B, Wu L, Wu J, et al. E2f1, E2f2 and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 2007; 27:65 - 78; PMID: 17167174; http://dx.doi.org/10.1128/MCB.02147-05
  • Pickering MT, Stadler BM, Kowalik TF. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 2009; 28:140 - 145; PMID: 18836483; http://dx.doi.org/10.1038/onc.2008.372
  • Krek W, Xu G, Livingston DM. Cyclin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell 1995; 83:1149 - 1158; PMID: 8548802; http://dx.doi.org/10.1016/0092-8674(95)90141-8
  • Frame FM, Rogoff HA, Pickering MT, Cress WD, Kowalik TF. E2F1 induces MRN foci formation and a cell cycle checkpoint response in human fibroblasts. Oncogene 2006; 25:3258 - 3266; PMID: 16434972; http://dx.doi.org/10.1038/sj.onc.1209352
  • Pickering MT, Kowalik TF. Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 2006; 25:746 - 755; PMID: 16186801; http://dx.doi.org/10.1038/sj.onc.1209103
  • Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145:435 - 446; PMID: 21529715; http://dx.doi.org/10.1016/j.cell.2011.03.044
  • Lee T, Yao G, Nevins J, You L. Sensing and integration of Erk and PI3K signals by Myc. PLOS Comput Biol 2008; 4:1000013; PMID: 18463697; http://dx.doi.org/10.1371/journal.pcbi.1000013
  • Kumar A, Marques M, Carrera AC. Phosphoinositide-3-kinase activation in late G1 is required for c-Myc stabilization and S phase entry. Mol Cell Biol 2006; 26:9116 - 9125; PMID: 17015466; http://dx.doi.org/10.1128/MCB.00783-06
  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14:2501 - 2514; PMID: 11018017; http://dx.doi.org/10.1101/gad.836800
  • Cobrinik D. Pocket proteins and cell cycle control. Oncogene 2005; 24:2796 - 2809; PMID: 15838516; http://dx.doi.org/10.1038/sj.onc.1208619
  • Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 2000; 14:2393 - 2409; PMID: 11018009; http://dx.doi.org/10.1101/gad.813200
  • Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 2008; 8:671 - 682; PMID: 18650841; http://dx.doi.org/10.1038/nrc2399
  • Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 2003; 424:223 - 228; PMID: 12853964; http://dx.doi.org/10.1038/nature01764
  • Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18:753 - 761; PMID: 9447971
  • Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 1992; 70:993 - 1006; PMID: 1388095; http://dx.doi.org/10.1016/0092-8674(92)90249-C
  • Buchkovich K, Duffy LA, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 1989; 58:1097 - 1105; PMID: 2673543; http://dx.doi.org/10.1016/0092-8674(89)90508-4
  • Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 2000; 14:804 - 816; PMID: 10766737
  • Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ, et al. E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 2002; 16:933 - 947; PMID: 11959842; http://dx.doi.org/10.1101/gad.969202
  • Hurford RK Jr, Cobrinik D, Lee MH, Dyson N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev 1997; 11:1447 - 1463; PMID: 9192872; http://dx.doi.org/10.1101/gad.11.11.1447
  • Smith EJ, Leone G, DeGregori J, Jakoi L, Nevins JR. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol Cell Biol 1996; 16:6965 - 6976; PMID: 8943352
  • Tedesco D, Lukas J, Reed SI. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev 2002; 16:2946 - 2957; PMID: 12435635; http://dx.doi.org/10.1101/gad.1011202
  • Bhattacharya S, Garriga J, Calbo J, Yong T, Haines DS, Grana X. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene 2003; 22:2443 - 2451; PMID: 12717421; http://dx.doi.org/10.1038/sj.onc.1206339
  • Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol 1997; 17:7268 - 7282; PMID: 9372959
  • Araki K, Nakajima Y, Eto K, Ikeda MA. Distinct recruitment of E2F family members to specific E2F-binding sites mediates activation and repression of the E2F1 promoter. Oncogene 2003; 22:7632 - 7641; PMID: 14576826; http://dx.doi.org/10.1038/sj.onc.1206840
  • Johnson DG, Ohtani K, Nevins JR. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev 1994; 8:1514 - 1525; PMID: 7958836; http://dx.doi.org/10.1101/gad.8.13.1514
  • Sears R, Ohtani K, Nevins JR. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol Cell Biol 1997; 17:5227 - 5235; PMID: 9271400
  • Leone G, Nuckolls F, Ishida S, Adams M, Sears R, Jakoi L, et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol Cell Biol 2000; 20:3626 - 3632; PMID: 10779352; http://dx.doi.org/10.1128/MCB.20.10.3626-32.2000
  • Adams MR, Sears R, Nuckolls F, Leone G, Nevins JR. Complex transcriptional regulatory mechanisms control expression of the E2F3 locus. Mol Cell Biol 2000; 20:3633 - 3639; PMID: 10779353; http://dx.doi.org/10.1128/MCB.20.10.3633-9.2000
  • Tsai SY, Opavsky R, Sharma N, Wu L, Naidu S, Nolan E, et al. Mouse development with a single E2F activator. Nature 2008; 454:1137 - 1141; PMID: 18594513; http://dx.doi.org/10.1038/nature07066
  • Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, et al. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 1992; 257:1689 - 1694; PMID: 1388288; http://dx.doi.org/10.1126/science.1388288
  • Dulic V, Lees E, Reed SI. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 1992; 257:1958 - 1961; PMID: 1329201; http://dx.doi.org/10.1126/science.1329201
  • Zerfass K, Schulze A, Spitkovsky D, Friedman V, Henglein B, Jansen-Durr P. Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol 1995; 69:6389 - 6399; PMID: 7666540
  • Spitkovsky D, Steiner P, Lukas J, Lees E, Pagano M, Schulze A, et al. Modulation of cyclin gene expression by adenovirus E1A in a cell line with E1A-dependent conditional proliferation. J Virol 1994; 68:2206 - 2214; PMID: 8139005
  • Herrera RE, Sah VP, Williams BO, Makela TP, Weinberg RA, Jacks T. Altered cell cycle kinetics, gene expression and G1 restriction point regulation in Rb-deficient fibroblasts. Mol Cell Biol 1996; 16:2402 - 2407; PMID: 8628308
  • Ohtani K, DeGregori J, Nevins JR. Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 1995; 92:12146 - 12150; PMID: 8618861; http://dx.doi.org/10.1073/pnas.92.26.12146
  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, et al. Cyclin E ablation in the mouse. Cell 2003; 114:431 - 443; PMID: 12941272; http://dx.doi.org/10.1016/S0092-8674(03)00645-7
  • Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, et al. Kinase-independent function of cyclin E. Mol Cell 2007; 25:127 - 139; PMID: 17218276; http://dx.doi.org/10.1016/j.molcel.2006.11.029
  • Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature 1999; 401:297 - 300; PMID: 10499591; http://dx.doi.org/10.1038/45836
  • Sharma N, Timmers C, Trikha P, Saavedra HI, Obery A, Leone G. Control of the p53-p21CIP1 Axis by E2f1, E2f2 and E2f3 is essential for G1/S progression and cellular transformation. J Biol Chem 2006; 281:36124 - 36131; PMID: 17008321; http://dx.doi.org/10.1074/jbc.M604152200
  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75:817 - 825; PMID: 8242752; http://dx.doi.org/10.1016/0092-8674(93)90500-p
  • Chen D, Pacal M, Wenzel P, Knoepfler PS, Leone G, Bremner R. Division and apoptosis of E2f-deficient retinal progenitors. Nature 2009; 462:925 - 929; PMID: 20016601; http://dx.doi.org/10.1038/nature08544
  • Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006; 8:1025 - 1031; PMID: 16892051; http://dx.doi.org/10.1038/ncb1468
  • Komori H, Enomoto M, Nakamura M, Iwanaga R, Ohtani K. Distinct E2F-mediated transcriptional program regulates p14ARF gene expression. EMBO J 2005; 24:3724 - 3736; PMID: 16211008; http://dx.doi.org/10.1038/sj.emboj.7600836
  • Mallakin A, Taneja P, Matise LA, Willingham MC, Inoue K. Expression of Dmp1 in specific differentiated, nonproliferating cells and its regulation by E2Fs. Oncogene 2006; 25:7703 - 7713; PMID: 16878159; http://dx.doi.org/10.1038/sj.onc.1209750
  • Ferrell JE Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 2002; 14:140 - 148; PMID: 11891111; http://dx.doi.org/10.1016/S0955-0674(02)00314-9
  • Brandman O, Ferrell JE Jr, Li R, Meyer T. Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 2005; 310:496 - 498; PMID: 16239477; http://dx.doi.org/10.1126/science.1113834
  • Longo DM, Hoffmann A, Tsimring LS, Hasty J. Coherent activation of a synthetic mammalian gene network. Syst Synth Biol 2010; 4:15 - 23; PMID: 19757189; http://dx.doi.org/10.1007/s11693-009-9044-5
  • Lee TJ, Yao G, Bennett DC, Nevins JR, You L. Stochastic E2F activation and reconciliation of phenomenological cell cycle models. PLoS Biol 2010; 8:1000488; PMID: 20877711; http://dx.doi.org/10.1371/journal.pbio.1000488
  • Castor LNA. G1 rate model accounts for cell cycle kinetics attributed to ‘transition probability’. Nature 1980; 287:857 - 859; PMID: 6159544; http://dx.doi.org/10.1038/287857a0
  • Brooks RF, Bennett DC, Smith JA. Mammalian cell cycles need two random transitions. Cell 1980; 19:493 - 504; PMID: 7357616; http://dx.doi.org/10.1016/0092-8674(80)90524-3
  • Coller HA, Forman JJ, Legesse-Miller A. “Myc'ed messages”: myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron. PLoS Genet 2007; 3:146; PMID: 17784791; http://dx.doi.org/10.1371/journal.pgen.0030146
  • Emmrich S, Putzer BM. Checks and balances: E2F-microRNA crosstalk in cancer control. Cell Cycle 2010; 19:2555 - 2567; PMID: 20581444
  • Bueno MJ, Gomez de Cedron M, Laresgoiti U, Fernandez-Piqueras J, Zubiaga AM, Malumbres M. Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol 2010; 30:2983 - 2995; PMID: 20404092; http://dx.doi.org/10.1128/MCB.01372-09
  • Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta 2011; 1812:592 - 601; PMID: 21315819
  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435:839 - 843; PMID: 15944709; http://dx.doi.org/10.1038/nature03677
  • Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 2007; 282:2130 - 2134; PMID: 17135268; http://dx.doi.org/10.1074/jbc.C600252200
  • Sylvestre Y, Guire VD, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 2007; 282:2135 - 2143; PMID: 17135249; http://dx.doi.org/10.1074/jbc.M608939200
  • Alon U. An introduction to systems biology: design principles of biological circuits 2007; Boca Raton, FL Chapman & Hall/CRC
  • Ma W, Trusina A, El-Samad H, Lim WA, Tang C. Defining network topologies that can achieve biochemical adaptation. Cell 2009; 138:760 - 773; PMID: 19703401; http://dx.doi.org/10.1016/j.cell.2009.06.013
  • Ferrell JE Jr. Signaling motifs and Weber's law. Mol Cell 2009; 36:724 - 727; PMID: 20005833; http://dx.doi.org/10.1016/j.molcel.2009.11.032
  • Levchenko A, Bruck J, Sternberg PW. Regulatory modules that generate biphasic signal response in biological systems. Syst Biol (Stevenage) 2004; 1:139 - 148; PMID: 17052124; http://dx.doi.org/10.1049/sb:20045014
  • Kim D, Kwon YK, Cho KH. The biphasic behavior of incoherent feed-forward loops in biomolecular regulatory networks. Bioessays 2008; 30:1204 - 1211; PMID: 18937374; http://dx.doi.org/10.1002/bies.20839
  • Kaplan S, Bren A, Dekel E, Alon U. The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol Syst Biol 2008; 4:203; PMID: 18628744; http://dx.doi.org/10.1038/msb.2008.43
  • Tsai TY, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE Jr. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 2008; 321:126 - 129; PMID: 18599789; http://dx.doi.org/10.1126/science.1156951
  • Nevozhay D, Adams RM, Murphy KF, Josic K, Balazsi G. Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc Natl Acad Sci USA 2009; 106:5123 - 5128; PMID: 19279212; http://dx.doi.org/10.1073/pnas.0809901106
  • Rosenfeld N, Elowitz MB, Alon U. Negative autoregulation speeds the response times of transcription networks. J Mol Biol 2002; 323:785 - 793; PMID: 12417193; http://dx.doi.org/10.1016/S0022-2836(02)00994-4
  • Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 2003; 100:11980 - 11985; PMID: 14530388; http://dx.doi.org/10.1073/pnas.2133841100
  • Mangan S, Itzkovitz S, Zaslaver A, Alon U. The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 2006; 356:1073 - 1081; PMID: 16406067; http://dx.doi.org/10.1016/j.jmb.2005.12.003
  • Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F and Myc. Proc Natl Acad Sci USA 2008; 105:19678 - 19683; PMID: 19066217; http://dx.doi.org/10.1073/pnas.0811166106
  • Datta A, Nag A, Pan W, Hay N, Gartel AL, Colamonici O, et al. Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc. J Biol Chem 2004; 279:36698 - 36707; PMID: 15199070; http://dx.doi.org/10.1074/jbc.M312305200
  • Datta A, Nag A, Raychaudhuri P. Differential regulation of E2F1, DP1, and the E2F1/DP1 complex by ARF. Mol Cell Biol 2002; 22:8398 - 8408; PMID: 12446760; http://dx.doi.org/10.1128/MCB.22.24.8398-408.2002
  • Datta A, Sen J, Hagen J, Korgaonkar CK, Caffrey M, Quelle DE, et al. ARF directly binds DP1: interaction with DP1 coincides with the G1 arrest function of ARF. Mol Cell Biol 2005; 25:8024 - 8036; PMID: 16135794; http://dx.doi.org/10.1128/MCB.25.18.8024-36.2005
  • Eymin B, Karayan L, Séité P, Brambilla C, Brambilla E, Larsen CJ, et al. Human ARF binds E2F1 and inhibits its transcriptional activity. Oncogene 2001; 20:1033 - 1041; PMID: 11314038; http://dx.doi.org/10.1038/sj.onc.1204220
  • Martelli F, Hamilton T, Silver DP, Sharpless NE, Bardeesy N, Rokas M, et al. p19ARF targets certain E2F species for degradation. Proc Natl Acad Sci USA 2001; 98:4455 - 4460; PMID: 11274364; http://dx.doi.org/10.1073/pnas.081061398
  • Mason SL, Loughran O, La Thangue NB. p14(ARF) regulates E2F activity. Oncogene 2002; 21:4220 - 4230; PMID: 12082609; http://dx.doi.org/10.1038/sj.onc.1205524
  • Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006; 6:663 - 673; PMID: 16915296; http://dx.doi.org/10.1038/nrc1954
  • Lindström MS, Wiman KG. Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 2003; 22:4993 - 5005; PMID: 12902982; http://dx.doi.org/10.1038/sj.onc.1206659
  • Sun B, Wingate H, Swisher SG, Keyomarsi K, Hunt KK. Absence of pRb facilitates E2F1-induced apoptosis in breast cancer cells. Cell Cycle 2010; 9:1122 - 1130; PMID: 20237430; http://dx.doi.org/10.4161/cc.9.6.10990
  • Ferrell JE Jr, Tsai TY, Yang Q. Modeling the cell cycle: why do certain circuits oscillate?. Cell 2011; 144:874 - 885; PMID: 21414480; http://dx.doi.org/10.1016/j.cell.2011.03.006
  • Girard F, Strausfeld U, Fernandez A, Lamb NJ. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 1991; 67:1169 - 1179; PMID: 1836977; http://dx.doi.org/10.1016/0092-8674(91)90293-8
  • Schulze A, Zerfass K, Spitkovsky D, Middendorp S, Berges J, Helin K, et al. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc Natl Acad Sci USA 1995; 92:11264 - 11268; PMID: 7479977; http://dx.doi.org/10.1073/pnas.92.24.11264
  • Lauper N, Beck AR, Cariou S, Richman L, Hofmann K, Reith W, et al. Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle. Oncogene 1998; 17:2637 - 2643; PMID: 9840927; http://dx.doi.org/10.1038/sj.onc.1202477
  • Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H. Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol 1994; 14:8420 - 8431; PMID: 7969176
  • Krek W, Ewen ME, Shirodkar S, Arany Z, Kaelin WG Jr, Livingston DM. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 1994; 78:161 - 172; PMID: 8033208; http://dx.doi.org/10.1016/0092-8674(94)90582-7
  • Kong LJ, Chang JT, Bild AH, Nevins JR. Compensation and specificity of function within the E2F family. Oncogene 2007; 26:321 - 327; PMID: 16909124; http://dx.doi.org/10.1038/sj.onc.1209817
  • Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS, et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 1998; 12:2120 - 2130; PMID: 9679057; http://dx.doi.org/10.1101/gad.12.14.2120
  • Ohta T, Xiong Y. Phosphorylation- and Skp1-independent in vitro ubiquitination of E2F1 by multiple ROC-cullin ligases. Cancer Res 2001; 61:1347 - 1353; PMID: 11245432
  • Hofmann F, Martelli F, Livingston DM, Wang Z. The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes Dev 1996; 10:2949 - 2959; PMID: 8956996; http://dx.doi.org/10.1101/gad.10.23.2949
  • Campanero MR, Flemington EK. Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc Natl Acad Sci USA 1997; 94:2221 - 2226; PMID: 9122175; http://dx.doi.org/10.1073/pnas.94.6.2221
  • Zhang L, Wang C. F-box protein Skp2: a novel transcriptional target of E2F. Oncogene 2006; 25:2615 - 2627; PMID: 16331253; http://dx.doi.org/10.1038/sj.onc.1209286
  • Marti A, Wirbelauer C, Scheffner M, Krek W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1999; 1:14 - 19; PMID: 10559858; http://dx.doi.org/10.1038/8984
  • Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 2004; 428:190 - 193; PMID: 15014502; http://dx.doi.org/10.1038/nature02330
  • Zhang H, Kobayashi R, Galaktionov K, Beach D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 1995; 82:915 - 925; PMID: 7553852; http://dx.doi.org/10.1016/0092-8674(95)90271-6
  • Maiti B, Li J, de Bruin A, Gordon F, Timmers C, Opavsky R, et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem 2005; 280:18211 - 18220; PMID: 15722552; http://dx.doi.org/10.1074/jbc.M501410200
  • de Bruin A, Maiti B, Jakoi L, Timmers C, Buerki R, Leone G. Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem 2003; 278:42041 - 42049; PMID: 12893818; http://dx.doi.org/10.1074/jbc.M308105200
  • Li J, Ran C, Li E, Gordon F, Comstock G, Siddiqui H, et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell 2008; 14:62 - 75; PMID: 18194653; http://dx.doi.org/10.1016/j.devcel.2007.10.017
  • Moon NS, Dyson N. E2F7 and E2F8 keep the E2F family in balance. Dev Cell 2008; 14:1 - 3; PMID: 18194644; http://dx.doi.org/10.1016/j.devcel.2007.12.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.