819
Views
17
CrossRef citations to date
0
Altmetric
Extra Views

“Micromanaging” metabolic syndrome

, &
Pages 3249-3252 | Received 22 Jul 2011, Accepted 29 Jul 2011, Published online: 01 Oct 2011

References

  • Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature 2005; 438:612 - 621; PMID: 16319881; http://dx.doi.org/10.1038/nature04399
  • Grundy SM. Absorption and metabolism of dietary cholesterol. Annu Rev Nutr 1983; 3:71 - 96; PMID: 6357243; http://dx.doi.org/10.1146/annurev.nu.03.070183.000443
  • Brown MS, Goldstein JL. Receptor-mediated control of cholesterol metabolism. Science 1976; 191:150 - 154; PMID: 174194; http://dx.doi.org/10.1126/science.174194
  • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89:331 - 340; PMID: 9150132; http://dx.doi.org/10.1016/S0092-8674(00)80213-5
  • Horton JD. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem Soc Trans 2002; 30:1091 - 1095; PMID: 12440980; http://dx.doi.org/10.1042/BST0301091
  • Osborne TF. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem 2000; 275:32379 - 32382; PMID: 10934219; http://dx.doi.org/10.1074/jbc.R000017200
  • Peet DJ, Janowski BA, Mangelsdorf DJ. The LXRs: a new class of oxysterol receptors. Curr Opin Genet Dev 1998; 8:571 - 575; PMID: 9794827; http://dx.doi.org/10.1016/S0959-437X(98)80013-0
  • Eberhard Y, Gronda M, Hurren R, Datti A, MacLean N, Ketela T, et al. Inhibition of SREBP1 sensitizes cells to death ligands. Oncotarget 2011; 2:186 - 196; PMID: 21406729
  • Tall AR. Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 2008; 263:256 - 273; PMID: 18271871; http://dx.doi.org/10.1111/j.1365-2796.2007.01898.x
  • Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 2008; 7:365 - 375; PMID: 18460328; http://dx.doi.org/10.1016/j.cmet.2008.03.001
  • Linsel-Nitschke P, Tall AR. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov 2005; 4:193 - 205; PMID: 15738977; http://dx.doi.org/10.1038/nrd1658
  • Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress and timing. Cell 2003; 113:673 - 676; PMID: 12809598; http://dx.doi.org/10.1016/S0092-8674(03)00428-8
  • Ambros V. The functions of animal microRNAs. Nature 2004; 431:350 - 355; PMID: 15372042; http://dx.doi.org/10.1038/nature02871
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136:215 - 233; PMID: 19167326; http://dx.doi.org/10.1016/j.cell.2009.01.002
  • Herrera-Merchan A, Cerrato C, Luengo G, Dominguez O, Piris MA, Serrano M, et al. miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle 2010; 9:3277 - 3285; PMID: 20703086; http://dx.doi.org/10.4161/cc.9.16.12598
  • Dang CV. MYC, microRNAs and glutamine addiction in cancers. Cell Cycle 2009; 8:3243 - 3245; PMID: 19806017; http://dx.doi.org/10.4161/cc.8.20.9522
  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3:87 - 98; PMID: 16459310; http://dx.doi.org/10.1016/j.cmet.2006.01.005
  • Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab 2010; 299:198 - 206; PMID: 20484008
  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12:735 - 739; PMID: 12007417; http://dx.doi.org/10.1016/S0960-9822(02)00809-6
  • Nakanishi N, Nakagawa Y, Tokushige N, Aoki N, Matsuzaka T, Ishii K, et al. The upregulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun 2009; 385:492 - 496; PMID: 19460359; http://dx.doi.org/10.1016/j.bbrc.2009.05.058
  • Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to upregulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008; 36:1153 - 1162; PMID: 18158304; http://dx.doi.org/10.1093/nar/gkm1113
  • Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328:1570 - 1573; PMID: 20466885; http://dx.doi.org/10.1126/science.1189862
  • Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010; 328:1566 - 1569; PMID: 20466882; http://dx.doi.org/10.1126/science.1189123
  • Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010; 107:12228 - 12232; PMID: 20566875; http://dx.doi.org/10.1073/pnas.1005191107
  • Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 2010; 107:17321 - 17326; PMID: 20855588; http://dx.doi.org/10.1073/pnas.1008499107
  • Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010; 285:33652 - 33661; PMID: 20732877; http://dx.doi.org/10.1074/jbc.M110.152090
  • Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011; 121:2921 - 2931; PMID: 21646721; http://dx.doi.org/10.1172/JCI57275
  • Daválos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011; 108:9232 - 9237; PMID: 21576456; http://dx.doi.org/10.1073/pnas.1102281108
  • Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007; 26:5489 - 5504; PMID: 17694089; http://dx.doi.org/10.1038/sj.onc.1210616
  • Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology, aging and calorie restriction. Genes Dev 2006; 20:2913 - 2921; PMID: 17079682; http://dx.doi.org/10.1101/gad.1467506
  • Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 2007; 72:483 - 488; PMID: 18419308; http://dx.doi.org/10.1101/sqb.2007.72.024
  • Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009; 460:587 - 591; PMID: 19641587; http://dx.doi.org/10.1038/nature08197
  • Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105:14447 - 14452; PMID: 18794531; http://dx.doi.org/10.1073/pnas.0803790105
  • Deng CX. SIRT1, is it a tumor promoter or tumor suppressor?. Int J Biol Sci 2009; 5:147 - 152; PMID: 19173036
  • Lee J, Kemper JK. Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging 2010; 2:527 - 534; PMID: 20689156
  • Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, et al. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging 2010; 2:415 - 431; PMID: 20634564
  • Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 2010; 12:224 - 236; PMID: 20816089; http://dx.doi.org/10.1016/j.cmet.2010.06.009
  • Xiao C, Kim HS, Lahusen T, Wang RH, Xu X, Gavrilova O, et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 2010; 285:36776 - 36784; PMID: 20847051; http://dx.doi.org/10.1074/jbc.M110.168039
  • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009; 326:437 - 440; PMID: 19833968; http://dx.doi.org/10.1126/science.1172156
  • Gachon F, Bonnefont X. Circadian clock-coordinated hepatic lipid metabolism: only transcriptional regulation?. Aging 2010; 2:101 - 106; PMID: 20354271

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.