516
Views
29
CrossRef citations to date
0
Altmetric
Extra Views

Mechanism of hypoxia-induced NFκB

, &
Pages 879-882 | Published online: 15 Mar 2011

References

  • Rocha S. Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 2007; 32:389 - 397
  • Kenneth NS, Rocha S. Regulation of gene expression by hypoxia. Biochem J 2008; 414:19 - 29
  • Cummins EP, Taylor CT. Hypoxia-responsive transcription factors. Pflugers Arch 2005; 450:363 - 371
  • Gilmore TD. Introduction to NFkappaB: players, pathways, perspectives. Oncogene 2006; 25:6680 - 6684
  • Pahl HL. Activators and target genes of Rel/NFkappaB transcription factors. Oncogene 1999; 18:6853 - 6866
  • Scheidereit C. IkappaB kinase complexes: gateways to NFkappaB activation and transcription. Oncogene 2006; 25:6685 - 6705
  • Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 2007; 26:3214 - 3226
  • Perkins ND. The Rel/NFkappaB family: friend and foe. Trends Biochem Sci 2000; 25:434 - 440
  • Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NFkappaB. Cell Death Differ 2006; 13:759 - 772
  • Gilmore TD. The Rel/NFkappaB signal transduction pathway: introduction. Oncogene 1999; 18:6842 - 6844
  • Koong AC, Chen EY, Giaccia AJ. Hypoxia causes the activation of nuclear factor kappaB through the phosphorylation of IkappaB alpha on tyrosine residues. Cancer Res 1994; 54:1425 - 1430
  • Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 2006; 103:18154 - 18159
  • Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S. Mechanism of hypoxiainduced NFkappaB. Mol Cell Biol 2010; 30:4901 - 4921
  • Iwai K, Tokunaga F. Linear polyubiquitination: a new regulator of NFkappaB activation. EMBO Rep 2009; 10:706 - 713
  • Haas AL. Linear polyubiquitylation: the missing link in NFkappaB signalling. Nat Cell Biol 2009; 11:116 - 118
  • Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 autoubiquitination is a critical determinant of IkappaB kinase activation. J Biol Chem 2007; 282:4102 - 4112
  • Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, Tergaonkar V. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell 2010; 40:75 - 86
  • Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, et al. XIAP induces NFkappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 2007; 26:689 - 702
  • Kenneth NS, Mudie S, Rocha S. IKK and NFkappaB-mediated regulation of Claspin impacts on ATR checkpoint function. EMBO J 2010; 29:2966 - 2978
  • Schumm K, Rocha S, Caamano J, Perkins ND. Regulation of p53 tumour suppressor target gene expression by the p52 NFkappaB subunit. EMBO J 2006; 25:4820 - 4832
  • Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 2007; 131:584 - 595
  • Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, et al. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 2010; 38:191 - 201
  • Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, Gill G. The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 2006; 26:4489 - 4498
  • Mukhopadhyay D, Arnaoutov A, Dasso M. The SUMO protease SENP6 is essential for inner kinetochore assembly. J Cell Biol 2010; 188:681 - 692
  • Haindl M, Harasim T, Eick D, Muller S. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 2008; 9:273 - 279
  • Shen LN, Geoffroy MC, Jaffray EG, Hay RT. Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochem J 2009; 421:223 - 230