830
Views
13
CrossRef citations to date
0
Altmetric
Extra Views

A role for sister telomere cohesion in telomere elongation by telomerase

, &
Pages 19-25 | Received 24 Oct 2011, Accepted 03 Nov 2011, Published online: 01 Jan 2012

References

  • de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19:2100 - 2110; PMID: 16166375; http://dx.doi.org/10.1101/gad.1346005
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345:458 - 460; PMID: 2342578; http://dx.doi.org/10.1038/345458a0
  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990; 346:866 - 868; PMID: 2392154; http://dx.doi.org/10.1038/346866a0
  • Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985; 43:405 - 413; PMID: 3907856; http://dx.doi.org/10.1016/0092-8674(85)90170-9
  • Greider CW, Blackburn EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 1987; 51:887 - 898; PMID: 3319189; http://dx.doi.org/10.1016/0092-8674(87)90576-9
  • Wright WE, Piatyszek MA, Rainey WR, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 1996; 18:173 - 179; PMID: 8934879; http://dx.doi.org/10.1002/(SICI)1520-6408(1996)18:2<173::AIDDVG10>3.0.CO;2-3
  • Bessler M, Wilson DB, Mason PJ. Dyskeratosis congenita. FEBS Lett 2010; 584:3831 - 3838; PMID: 20493861; http://dx.doi.org/10.1016/j.febslet.2010.05.019
  • Alter BP, Baerlocher GM, Savage SA, Chanock SJ, Weksler BB, Willner JP, et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 2007; 110:1439 - 1447; PMID: 17468339; http://dx.doi.org/10.1182/blood-2007-02-075598
  • Gadalla SM, Cawthon R, Giri N, Alter BP, Savage SA. Telomere length in blood, buccal cells, and fibroblasts from patients with inherited bone marrow failure syndromes. Aging (Albany NY) 2010; 2:867 - 874; PMID: 21113082
  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer [see comments]. Science 1994; 266:2011 - 2015; PMID: 7605428; http://dx.doi.org/10.1126/science.7605428
  • Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, et al. hEST2, the putative human telomerase catalytic subunit gene, is upregulated in tumor cells and during immortalization. Cell 1997; 90:785 - 795; PMID: 9288757; http://dx.doi.org/10.1016/S0092-8674(00)80538-3
  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277:955 - 959; PMID: 9252327; http://dx.doi.org/10.1126/science.277.5328.955
  • Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33:787 - 791; PMID: 9282118; http://dx.doi.org/10.1016/S0959-8049(97)00062-2
  • Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, et al. Inhibition of telomerase limits the growth of human cancer cells [see comments]. Nat Med 1999; 5:1164 - 1170; PMID: 10502820; http://dx.doi.org/10.1038/13495
  • Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 1999; 13:2388 - 2399; PMID: 10500096; http://dx.doi.org/10.1101/gad.13.18.2388
  • Smogorzewska A, de Lange T. Regulation of Telomerase by Telomeric Proteins. Annu Rev Biochem 2004; 73:177 - 208; PMID: 15189140
  • Chong L, van Steensel B, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, et al. A human telomeric protein. Science 1995; 270:1663 - 1667; PMID: 7502076; http://dx.doi.org/10.1126/science.270.5242.1663
  • Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E. Telomeric localization of TRF2, a novel human telobox protein. Nat Genet 1997; 17:236 - 239; PMID: 9326951; http://dx.doi.org/10.1038/ng1097-236
  • Broccoli D, Smogorzewska A, Chong L, de Lange T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 1997; 17:231 - 235; PMID: 9326950; http://dx.doi.org/10.1038/ng1097-231
  • Kim SH, Kaminker P, Campisi J. TIN2, a new regulator of telomere length in human cells [see comments]. Nat Genet 1999; 23:405 - 412; PMID: 10581025; http://dx.doi.org/10.1038/13854
  • Houghtaling BR, Cuttonaro L, Chang W, Smith S. A Dynamic Molecular Link between the Telomere Length Regulator TRF1 and the Chromosome End Protector TRF2. Curr Biol 2004; 14:1621 - 1631; PMID: 15380063; http://dx.doi.org/10.1016/j.cub.2004.08.052
  • Liu D, Safari A, O'Connor MS, Chan DW, Laegeler A, Qin J, et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 2004; 6:673 - 680; PMID: 15181449; http://dx.doi.org/10.1038/ncb1142
  • Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 2004; 18:1649 - 1654; PMID: 15231715; http://dx.doi.org/10.1101/gad.1215404
  • Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 2001; 292:1171 - 1175; PMID: 11349150; http://dx.doi.org/10.1126/science.1060036
  • Loayza D, de Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 2003; 423:1013 - 1018; PMID: 12768206; http://dx.doi.org/10.1038/nature01688
  • Li B, Oestreich S, de Lange T. Identification of human Rap1: implications for telomere evolution. Cell 2000; 101:471 - 483; PMID: 10850490; http://dx.doi.org/10.1016/S0092-8674(00)80858-2
  • Ancelin K, Brunori M, Bauwens S, Koering CE, Brun C, Ricoul M, et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol 2002; 22:3474 - 3487; PMID: 11971978; http://dx.doi.org/10.1128/MCB.22.10.3474-87.2002
  • van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385:740 - 743; PMID: 9034193; http://dx.doi.org/10.1038/385740a0
  • Smith S, Giriat I, Schmitt A, de Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres [see comments]. Science 1998; 282:1484 - 1487; PMID: 9822378; http://dx.doi.org/10.1126/science.282.5393.1484
  • Smith S, de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol 2000; 10:1299 - 1302; PMID: 11069113; http://dx.doi.org/10.1016/S0960-9822(00)00752-1
  • Chang W, Dynek JN, Smith S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev 2003; 17:1328 - 1333; PMID: 12782650; http://dx.doi.org/10.1101/gad.1077103
  • Cook BD, Dynek JN, Chang W, Shostak G, Smith S. Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 2002; 22:332 - 342; PMID: 11739745; http://dx.doi.org/10.1128/MCB.22.1.332-42.2002
  • Ye JZ, de Lange T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat Genet 2004; 36:618 - 623; PMID: 15133513; http://dx.doi.org/10.1038/ng1360
  • Canudas S, Houghtaling BR, Kim JY, Dynek JN, Chang WG, Smith S. Protein requirements for sister telomere association in human cells. EMBO J 2007; 26:4867 - 4878; PMID: 17962804; http://dx.doi.org/10.1038/sj.emboj.7601903
  • Canudas S, Houghtaling BR, Bhanot M, Sasa G, Savage SA, Bertuch AA, et al. A role for heterochromatin protein 1{gamma} at human telomeres. Genes Dev 2011; 25:1807 - 1819; PMID: 21865325; http://dx.doi.org/10.1101/gad.17325211
  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410:120 - 124; PMID: 11242054; http://dx.doi.org/10.1038/35065138
  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410:116 - 120; PMID: 11242053; http://dx.doi.org/10.1038/35065132
  • Brasher SV, Smith BO, Fogh RH, Nietlispach D, Thiru A, Nielsen PR, et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 2000; 19:1587 - 1597; PMID: 10747027; http://dx.doi.org/10.1093/emboj/19.7.1587
  • Smothers JF, Henikoff S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr Biol 2000; 10:27 - 30; PMID: 10660299; http://dx.doi.org/10.1016/S0960-9822(99)00260-2
  • Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 2008; 82:501 - 509; PMID: 18252230; http://dx.doi.org/10.1016/j.ajhg.2007.10.004
  • Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 2008; 112:3594 - 3600; PMID: 18669893; http://dx.doi.org/10.1182/blood-2008-05-153445
  • Canudas S, Smith S. Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J Cell Biol 2009; 187:165 - 173; PMID: 19822671; http://dx.doi.org/10.1083/jcb.200903096
  • Anderson DE, Losada A, Erickson HP, Hirano T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 2002; 156:419 - 424; PMID: 11815634; http://dx.doi.org/10.1083/jcb.200111002
  • Haering CH, Lowe J, Hochwagen A, Nasmyth K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 2002; 9:773 - 788; PMID: 11983169; http://dx.doi.org/10.1016/S1097-2765(02)00515-4
  • Losada A, Yokochi T, Kobayashi R, Hirano T. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J Cell Biol 2000; 150:405 - 416; PMID: 10931856; http://dx.doi.org/10.1083/jcb.150.3.405
  • Sumara I, Vorlaufer E, Stukenberg PT, Kelm O, Redemann N, Nigg EA, et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 2002; 9:515 - 525; PMID: 11931760; http://dx.doi.org/10.1016/S1097-2765(02)00473-2
  • Holzmann J, Fuchs J, Pichler P, Peters JM, Mechtler K. Lesson from the stoichiometry determination of the cohesin complex: a short protease mediated elution increases the recovery from crosslinked antibody-conjugated beads. J Proteome Res 2011; 10:780 - 789; PMID: 21043528; http://dx.doi.org/10.1021/pr100927x
  • Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. Protein composition of catalytically active human telomerase from immortal cells. Science 2007; 315:1850 - 1853; PMID: 17395830; http://dx.doi.org/10.1126/science.1138596
  • Cristofari G, Lingner J. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J 2006; 25:565 - 574; PMID: 16424902; http://dx.doi.org/10.1038/sj.emboj.7600952
  • Prescott J, Blackburn EH. Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev 1997; 11:2790 - 2800; PMID: 9353249; http://dx.doi.org/10.1101/gad.11.21.2790
  • Wenz C, Enenkel B, Amacker M, Kelleher C, Damm K, Lingner J. Human telomerase contains two cooperating telomerase RNA molecules. EMBO J 2001; 20:3526 - 3534; PMID: 11432839; http://dx.doi.org/10.1093/emboj/20.13.3526
  • Giraud-Panis MJ, Teixeira MT, Geli V, Gilson E. CST meets shelterin to keep telomeres in check. Mol Cell 2010; 39:665 - 676; PMID: 20832719; http://dx.doi.org/10.1016/j.molcel.2010.08.024
  • Zhao Y, Abreu E, Kim J, Stadler G, Eskiocak U, Terns MP, et al. Processive and Distributive Extension of Human Telomeres by Telomerase under Homeostatic and Nonequilibrium Conditions. Mol Cell 2011; 42:297 - 307; PMID: 21549308; http://dx.doi.org/10.1016/j.molcel.2011.03.020
  • Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, Shay JW, et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 2009; 138:463 - 475; PMID: 19665970; http://dx.doi.org/10.1016/j.cell.2009.05.026
  • Sasa G, Ribes-Zamora A, Nelson N, Bertuch A. Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood. Clin Genet 2011; In press
  • Vulliamy T, Beswick R, Kirwan M, Hossain U, Walne A, Dokal I. Telomere length measurement can distinguish pathogenic from non-pathogenic variants in the shelterin component, TIN2. Clin Genet 2011; In press
  • Vulliamy T, Marrone A, Szydlo R, Walne A, Mason PJ, Dokal I. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 2004; 36:447 - 449; PMID: 15098033; http://dx.doi.org/10.1038/ng1346
  • Armanios M, Chen JL, Chang YP, Brodsky RA, Hawkins A, Griffin CA, et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci USA 2005; 102:15960 - 15964; PMID: 16247010; http://dx.doi.org/10.1073/pnas.0508124102
  • Agarwal S, Loh YH, McLoughlin EM, Huang J, Park IH, Miller JD, et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 2010; 464:292 - 296; PMID: 20164838; http://dx.doi.org/10.1038/nature08792
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861 - 872; PMID: 18035408; http://dx.doi.org/10.1016/j.cell.2007.11.019
  • Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 2009; 323:644 - 648; PMID: 19179534; http://dx.doi.org/10.1126/science.1165357
  • Venteicher AS, Artandi SE. TCAB1: driving telomerase to Cajal bodies. Cell Cycle 2009; 8:1329 - 1331; PMID: 19342896; http://dx.doi.org/10.4161/cc.8.9.8288
  • Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, Myers T, et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev 2011; 25:11 - 16; PMID: 21205863; http://dx.doi.org/10.1101/gad.2006411
  • Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 2011; 474:399 - 402; PMID: 21602826; http://dx.doi.org/10.1038/nature10084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.