1,464
Views
69
CrossRef citations to date
0
Altmetric
Extra Views

Deconvoluting mTOR biology

&
Pages 236-248 | Received 20 Nov 2011, Accepted 12 Dec 2011, Published online: 15 Jan 2012

References

  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12:9 - 22; PMID: 17613433; http://dx.doi.org/10.1016/j.ccr.2007.05.008
  • Yang Q, Guan KL. Expanding mTOR signaling. Cell Res 2007; 17:666 - 681; PMID: 17680028; http://dx.doi.org/10.1038/cr.2007.64
  • Rosner M, Hanneder M, Siegel N, Valli A, Fuchs C, Hengstschlager M. The mTOR pathway and its role in human genetic diseases. Mutat Res 2008; 659:284 - 292; PMID: 18598780; http://dx.doi.org/10.1016/j.mrrev.2008.06.001
  • Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K. Mammalian target of rapamycin: hitting the bull'seye for neurological disorders. Oxid Med Cell Longev 2010; 3:374 - 391; PMID: 21307646; http://dx.doi.org/10.4161/oxim.3.6.14787
  • Proud CG. mTOR Signalling in Health and Disease. Biochem Soc Trans 2011; 39:431 - 436; PMID: 21428914; http://dx.doi.org/10.1042/BST0390431
  • Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci USA 2002; 99:467 - 472; PMID: 11756682; http://dx.doi.org/10.1073/pnas.012605299
  • Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 2004; 116:467 - 479; PMID: 15016380; http://dx.doi.org/10.1016/S0092-8674(04)00115-1
  • Slipczuk L, Bekinschtein P, Katche C, Cammarota M, Izquierdo I, Medina JH. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS ONE 2009; 4:6007; PMID: 19547753; http://dx.doi.org/10.1371/journal.pone.0006007
  • Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 2010; 33:67 - 75; PMID: 19963289; http://dx.doi.org/10.1016/j.tins.2009.11.003
  • Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, et al. Hypothalamic mTOR signaling regulates food intake. Science 2006; 312:927 - 930; PMID: 16690869; http://dx.doi.org/10.1126/science.1124147
  • Roa J, Garcia-Galiano D, Varela L, Sanchez-Garrido MA, Pineda R, Castellano JM, et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 2009; 150:5016 - 5026; PMID: 19734277; http://dx.doi.org/10.1210/en.2009-0096
  • Gao Y, Deng K, Hou J, Bryson JB, Barco A, Nikulina E, et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 2004; 44:609 - 621; PMID: 15541310; http://dx.doi.org/10.1016/j.neuron.2004.10.030
  • Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008; 322:963 - 966; PMID: 18988856; http://dx.doi.org/10.1126/science.1161566
  • Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010; 13:1075 - 1081; PMID: 20694004; http://dx.doi.org/10.1038/nn.2603
  • Codeluppi S, Svensson CI, Hefferan MP, Valencia F, Silldorff MD, Oshiro M, et al. The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci 2009; 29:1093 - 1104; PMID: 19176818
  • Abe N, Borson SH, Gambello MJ, Wang F, Cavalli V. Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J Biol Chem 2010; 285:28034 - 28043; PMID: 20615870; http://dx.doi.org/10.1074/jbc.M110.125336
  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36:585 - 595; PMID: 15146184; http://dx.doi.org/10.1038/ng1362
  • Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 2006; 15:433 - 442; PMID: 16368705; http://dx.doi.org/10.1093/hmg/ddi458
  • Santini E, Heiman M, Greengard P, Valjent E, Fisone G. Inhibition of mTOR signaling in Parkinson's disease prevents L-DOPA-induced dyskinesia. Sci Signal 2009; 2:36; PMID: 19622833; http://dx.doi.org/10.1126/scisignal.2000308
  • Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, et al. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease. PLoS ONE 2010; 5:12845; PMID: 20862226; http://dx.doi.org/10.1371/journal.pone.0012845
  • Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS ONE 2010; 5:9979; PMID: 20376313; http://dx.doi.org/10.1371/journal.pone.0009979
  • Buckmaster PS, Ingram EA, Wen X. Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J Neurosci 2009; 29:8259 - 8269; PMID: 19553465
  • Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009; 29:6964 - 6972; PMID: 19474323
  • Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 2008; 63:444 - 453; PMID: 18389497; http://dx.doi.org/10.1002/ana.21331
  • Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron 2006; 50:377 - 388; PMID: 16675393; http://dx.doi.org/10.1016/j.neuron.2006.03.023
  • Gutmann DH, Aylsworth A, Carey JC, Korf B, Marks J, Pyeritz RE, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 1997; 278:51 - 57; PMID: 9207339; http://dx.doi.org/10.1001/jama.1997.03550010065042
  • Dasgupta B, Gutmann DH. Neurofibromatosis 1: closing the GAP between mice and men. Curr Opin Genet Dev 2003; 13:20 - 27; PMID: 12573431; http://dx.doi.org/10.1016/S0959-437X(02)00015-1
  • Banerjee S, Crouse NR, Emnett RJ, Gianino SM, Gutmann DH. Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc Natl Acad Sci USA 2011; 108:15996 - 16001; PMID: 21896734; http://dx.doi.org/10.1073/pnas.1019012108
  • Hegedus B, Dasgupta B, Shin JE, Emnett RJ, Hart-Mahon EK, Elghazi L, et al. Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 2007; 1:443 - 457; PMID: 18371380; http://dx.doi.org/10.1016/j.stem.2007.07.008
  • Hegedus B, Banerjee D, Yeh TH, Rothermich S, Perry A, Rubin JB, et al. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res 2008; 68:1520 - 1528; PMID: 18316617; http://dx.doi.org/10.1158/0008-5472.CAN-07-5916
  • Johannessen CM, Johnson BW, Williams SM, Chan AW, Reczek EE, Lynch RC, et al. TORC1 is essential for NF1-associated malignancies. Curr Biol 2008; 18:56 - 62; PMID: 18164202; http://dx.doi.org/10.1016/j.cub.2007.11.066
  • Johansson G, Mahller YY, Collins MH, Kim MO, Nobukuni T, Perentesis J, et al. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol Cancer Ther 2008; 7:1237 - 1245; PMID: 18483311; http://dx.doi.org/10.1158/1535-7163.MCT-07-2335
  • Crino PB, Henske EP. New developments in the neurobiology of the tuberous sclerosis complex. Neurology 1999; 53:1384 - 1390; PMID: 10534239
  • Franz DN, Bissler JJ, McCormack FX. Tuberous sclerosis complex: neurological, renal and pulmonary manifestations. Neuropediatrics 2010; 41:199 - 208; PMID: 21210335; http://dx.doi.org/10.1055/s-0030-1269906
  • Carsillo T, Astrinidis A, Henske EP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA 2000; 97:6085 - 6090; PMID: 10823953; http://dx.doi.org/10.1073/pnas.97.11.6085
  • van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277:805 - 808; PMID: 9242607; http://dx.doi.org/10.1126/science.277.5327.805
  • European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75:1305 - 1315; PMID: 8269512; http://dx.doi.org/10.1016/0092-8674(93)90618-Z
  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11:1457 - 1466; PMID: 12820960; http://dx.doi.org/10.1016/S1097-2765(03)00220-X
  • Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17:1829 - 1834; PMID: 12869586; http://dx.doi.org/10.1101/gad.1110003
  • Nellist M, van Slegtenhorst MA, Goedbloed M, van den Ouweland AM, Halley DJ, van der Sluijs P. Characterization of the cytosolic tuberinhamartin complex. Tuberin is a cytosolic chaperone for hamartin. J Biol Chem 1999; 274:35647 - 35652; PMID: 10585443; http://dx.doi.org/10.1074/jbc.274.50.35647
  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13:1259 - 1268; PMID: 12906785; http://dx.doi.org/10.1016/S0960-9822(03)00506-2
  • van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, et al. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 1998; 7:1053 - 1057; PMID: 9580671; http://dx.doi.org/10.1093/hmg/7.6.1053
  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003; 5:578 - 581; PMID: 12771962; http://dx.doi.org/10.1038/ncb999
  • Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 2006; 59:490 - 498; PMID: 16453317; http://dx.doi.org/10.1002/ana.20784
  • Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010; 363:1801 - 1811; PMID: 21047224; http://dx.doi.org/10.1056/NEJMoa1001671
  • Lam C, Bouffet E, Tabori U, Mabbott D, Taylor M, Bartels U. Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer 2010; 54:476 - 479; PMID: 19856393; http://dx.doi.org/10.1002/pbc.22298
  • Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 2005; 42:318 - 321; PMID: 15805158; http://dx.doi.org/10.1136/jmg.2004.024646
  • Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16:64 - 67; PMID: 9140396; http://dx.doi.org/10.1038/ng059764
  • Nelen MR, van Staveren WC, Peeters EA, Hassel MB, Gorlin RJ, Hamm H, et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 1997; 6:1383 - 1387; PMID: 9259288; http://dx.doi.org/10.1093/hmg/6.8.1383
  • Zhou XP, Marsh DJ, Morrison CD, Chaudhury AR, Maxwell M, Reifenberger G, et al. Germline inactivation of PTEN and dysregulation of the phosphoinositol-3-kinase/Akt pathway cause human Lhermitte-Duclos disease in adults. Am J Hum Genet 2003; 73:1191 - 1198; PMID: 14566704; http://dx.doi.org/10.1086/379382
  • Zhou XP, Waite KA, Pilarski R, Hampel H, Fernandez MJ, Bos C, et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet 2003; 73:404 - 411; PMID: 12844284; http://dx.doi.org/10.1086/377109
  • Kwon CH, Zhu X, Zhang J, Baker SJ. mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc Natl Acad Sci USA 2003; 100:12923 - 12928; PMID: 14534328; http://dx.doi.org/10.1073/pnas.2132711100
  • Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W, Sinton C, et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci 2009; 29:1773 - 1783; PMID: 19211884
  • Sunnen CN, Brewster AL, Lugo JN, Vanegas F, Turcios E, Mukhi S, et al. Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia 2011; 52:2065 - 2075; PMID: 21973019; http://dx.doi.org/10.1111/j.1528-167.2011.03280.x
  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391:184 - 187; PMID: 9428765; http://dx.doi.org/10.1038/34432
  • Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 2004; 18:1533 - 1538; PMID: 15231735; http://dx.doi.org/10.1101/gad.1199104
  • Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6:91 - 99; PMID: 15261145; http://dx.doi.org/10.1016/j.ccr.2004.06.007
  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13:2004 - 2008; PMID: 14614828; http://dx.doi.org/10.1016/j.cub.2003.10.031
  • Fu A, Ng AC, Depatie C, Wijesekara N, He Y, Wang GS, et al. Loss of Lkb1 in adult beta cells increases beta cell mass and enhances glucose tolerance in mice. Cell Metab 2009; 10:285 - 295; PMID: 19808021; http://dx.doi.org/10.1016/j.cmet.2009.08.008
  • Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468:701 - 704; PMID: 21124456; http://dx.doi.org/10.1038/nature09595
  • Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol 1996; 14:483 - 510; PMID: 8717522; http://dx.doi.org/10.1146/annurev.immunol.14.1.483
  • Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253:905 - 909; PMID: 1715094; http://dx.doi.org/10.1126/science.1715094
  • Heitman J, Movva NR, Hiestand PC, Hall MN. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1991; 88:1948 - 1952; PMID: 1705713; http://dx.doi.org/10.1073/pnas.88.5.1948
  • Koltin Y, Faucette L, Bergsma DJ, Levy MA, Cafferkey R, Koser PL, et al. Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidylprolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol 1991; 11:1718 - 1723; PMID: 1996117
  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993; 73:585 - 596; PMID: 8387896; http://dx.doi.org/10.1016/0092-8674(93)90144-F
  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369:756 - 758; PMID: 8008069; http://dx.doi.org/10.1038/369756a0
  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78:35 - 43; PMID: 7518356; http://dx.doi.org/10.1016/0092-8674(94)90570-3
  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995; 270:815 - 822; PMID: 7822316; http://dx.doi.org/10.1074/jbc.270.2.815
  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997; 277:99 - 101; PMID: 9204908; http://dx.doi.org/10.1126/science.277.5322.99
  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 1998; 95:1432 - 1437; PMID: 9465032; http://dx.doi.org/10.1073/pnas.95.4.1432
  • Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 2000; 14:2712 - 2724; PMID: 11069888; http://dx.doi.org/10.1101/gad.835000
  • Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 2000; 14:2689 - 2694; PMID: 11069885; http://dx.doi.org/10.1101/gad.845700
  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163 - 175; PMID: 12150925; http://dx.doi.org/10.1016/S0092-8674(02)00808-5
  • Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 2009; 187:859 - 874; PMID: 20008564; http://dx.doi.org/10.1083/jcb.200903131
  • Avruch J, Belham C, Weng Q, Hara K, Yonezawa K. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. Prog Mol Subcell Biol 2001; 26:115 - 154; PMID: 11575164; http://dx.doi.org/10.1007/978-3-642-56688-2_5
  • Thomas G. The S6 kinase signaling pathway in the control of development and growth. Biol Res 2002; 35:305 - 313; PMID: 12415748; http://dx.doi.org/10.4067/S0716-97602002000200022
  • Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE. Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 1992; 257:973 - 977; PMID: 1380182; http://dx.doi.org/10.1126/science.1380182
  • Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 1992; 69:1227 - 1236; PMID: 1377606; http://dx.doi.org/10.1016/0092-8674(92)90643-Q
  • Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G. Drosophila S6 kinase: a regulator of cell size. Science 1999; 285:2126 - 2129; PMID: 10497130; http://dx.doi.org/10.1126/science.285.5436.2126
  • Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998; 17:6649 - 6659; PMID: 9822608; http://dx.doi.org/10.1093/emboj/17.22.6649
  • Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 1994; 266:653 - 656; PMID: 7939721; http://dx.doi.org/10.1126/science.7939721
  • Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence J Jr, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 1994; 371:762 - 767; PMID: 7935836; http://dx.doi.org/10.1038/371762a0
  • Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, et al. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA 1995; 92:7222 - 7226; PMID: 7638171; http://dx.doi.org/10.1073/pnas.92.16.7222
  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110:177 - 189; PMID: 12150926; http://dx.doi.org/10.1016/S0092-8674(02)00833-4
  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14:1296 - 1302; PMID: 15268862; http://dx.doi.org/10.1016/j.cub.2004.06.054
  • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003; 11:895 - 904; PMID: 12718876; http://dx.doi.org/10.1016/S1097-2765(03)00114-X
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307:1098 - 1101; PMID: 15718470; http://dx.doi.org/10.1126/science.1106148
  • Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 2006; 16:1865 - 1870; PMID: 16919458; http://dx.doi.org/10.1016/j.cub.2006.08.001
  • Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 2007; 405:513 - 522; PMID: 17461779; http://dx.doi.org/10.1042/BJ20070540
  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25:903 - 915; PMID: 17386266; http://dx.doi.org/10.1016/j.molcel.2007.03.003
  • Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9:316 - 323; PMID: 17277771; http://dx.doi.org/10.1038/ncb1547
  • Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137:873 - 886; PMID: 19446321; http://dx.doi.org/10.1016/j.cell.2009.03.046
  • Zhao Y, Xiong X, Sun Y. DEPTOR, an mTOR Inhibitor, Is a Physiological Substrate of SCF(betaTrCP) E3 Ubiquitin Ligase and Regulates Survival and Autophagy. Mol Cell 2011; 44:304 - 316; PMID: 22017876; http://dx.doi.org/10.1016/j.molcel.2011.08.029
  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496 - 1501; PMID: 18497260; http://dx.doi.org/10.1126/science.1157535
  • Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10:935 - 945; PMID: 18604198; http://dx.doi.org/10.1038/ncb1753
  • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 2003; 5:566 - 571; PMID: 12766776; http://dx.doi.org/10.1038/ncb996
  • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4:648 - 657; PMID: 12172553; http://dx.doi.org/10.1038/ncb839
  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide-3-kinase/akt pathway. Mol Cell 2002; 10:151 - 162; PMID: 12150915; http://dx.doi.org/10.1016/S1097-2765(02)00568-3
  • Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002; 4:658 - 665; PMID: 12172554; http://dx.doi.org/10.1038/ncb840
  • Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 2003; 278:32493 - 32496; PMID: 12842888; http://dx.doi.org/10.1074/jbc.C300226200
  • Tee AR, Anjum R, Blenis J. Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide-3-kinase/Akt-dependent and -independent phosphorylation of tuberin. J Biol Chem 2003; 278:37288 - 37296; PMID: 12867426; http://dx.doi.org/10.1074/jbc.M303257200
  • Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 2007; 282:24514 - 24524; PMID: 17604271; http://dx.doi.org/10.1074/jbc.M704406200
  • Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007; 282:20329 - 20339; PMID: 17517883; http://dx.doi.org/10.1074/jbc.M702636200
  • Wang L, Harris TE, Lawrence J Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 2008; 283:15619 - 15627; PMID: 18372248; http://dx.doi.org/10.1074/jbc.M800723200
  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126:955 - 968; PMID: 16959574; http://dx.doi.org/10.1016/j.cell.2006.06.055
  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30:214 - 226; PMID: 18439900; http://dx.doi.org/10.1016/j.molcel.2008.03.003
  • Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 1999; 24:22 - 25; PMID: 10087918; http://dx.doi.org/10.1016/S0968-0004(98)01340-1
  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18:283 - 293; PMID: 15866171; http://dx.doi.org/10.1016/j.molcel.2005.03.027
  • Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134:451 - 460; PMID: 18692468; http://dx.doi.org/10.1016/j.cell.2008.06.028
  • Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011; 10:2305 - 2316; PMID: 21670596; http://dx.doi.org/10.4161/cc.10.14.16586
  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12:21 - 35; PMID: 21157483; http://dx.doi.org/10.1038/nrm3025
  • Hornstein E, Tang H, Meyuhas O. Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. Cold Spring Harb Symp Quant Biol 2001; 66:477 - 484; PMID: 12762050; http://dx.doi.org/10.1101/sqb.2001.66.477
  • Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol-3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 2001; 21:8671 - 8683; PMID: 11713299; http://dx.doi.org/10.1128/MCB.21.24.8671-83.2001
  • Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 2000; 267:6321 - 6330; PMID: 11029573; http://dx.doi.org/10.1046/j.1432-327.2000.01719.x
  • Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae SS, et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol-3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 2002; 22:8101 - 8113; PMID: 12417714; http://dx.doi.org/10.1128/MCB.22.23.8101-13.2002
  • Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996; 15:658 - 664; PMID: 8599949
  • Haghighat A, Mader S, Pause A, Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J 1995; 14:5701 - 5709; PMID: 8521827
  • Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 1995; 15:4990 - 4997; PMID: 7651417
  • Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 2004; 23:1761 - 1769; PMID: 15071500; http://dx.doi.org/10.1038/sj.emboj.7600193
  • Shahbazian D, Parsyan A, Petroulakis E, Topisirovic I, Martineau Y, Gibbs BF, et al. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol Cell Biol 2010; 30:1478 - 1485; PMID: 20086100; http://dx.doi.org/10.1128/MCB.01218-09
  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 2006; 314:467 - 471; PMID: 17053147; http://dx.doi.org/10.1126/science.1130276
  • Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH. A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 2004; 24:3894 - 3906; PMID: 15082783; http://dx.doi.org/10.1128/MCB.24.9.3894-906.2004
  • Mayer C, Grummt I. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 2006; 25:6384 - 6391; PMID: 17041624; http://dx.doi.org/10.1038/sj.onc.1209883
  • Pelletier CL, Maggi L Jr, Brady SN, Scheidenhelm DK, Gutmann DH, Weber JD. TSC1 sets the rate of ribosome export and protein synthesis through nucleophosmin translation. Cancer Res 2007; 67:1609 - 1617; PMID: 17308101; http://dx.doi.org/10.1158/0008-5472.CAN-06-2875
  • Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD. Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene 2011; 30:77 - 86; PMID: 20802533; http://dx.doi.org/10.1038/onc.2010.404
  • Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res 2005; 65:2755 - 2760; PMID: 15805275; http://dx.doi.org/10.1158/0008-5472.CAN-04-4058
  • Maggi L Jr, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR, et al. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol 2008; 28:7050 - 7065; PMID: 18809582; http://dx.doi.org/10.1128/MCB.01548-07
  • Yu Y, Maggi L Jr, Brady SN, Apicelli AJ, Dai MS, Lu H, et al. Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol Cell Biol 2006; 26:3798 - 3809; PMID: 16648475; http://dx.doi.org/10.1128/MCB.26.10.3798-809.2006
  • Sandsmark DK, Zhang H, Hegedus B, Pelletier CL, Weber JD, Gutmann DH. Nucleophosmin mediates mammalian target of rapamycin-dependent actin cytoskeleton dynamics and proliferation in neurofibromin-deficient astrocytes. Cancer Res 2007; 67:4790 - 4799; PMID: 17510408; http://dx.doi.org/10.1158/0008-5472.CAN-06-4470
  • Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 2011; 436:169 - 179; PMID: 21413931; http://dx.doi.org/10.1042/BJ20102103
  • Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, et al. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 2001; 20:7052 - 7059; PMID: 11742982; http://dx.doi.org/10.1093/emboj/20.24.7052
  • Pearce D. The role of SGK1 in hormone-regulated sodium transport. Trends Endocrinol Metab 2001; 12:341 - 347; PMID: 11551807; http://dx.doi.org/10.1016/S1043-2760(01)00439-8
  • Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via over-expression of rictor. Cancer Res 2007; 67:11712 - 11720; PMID: 18089801; http://dx.doi.org/10.1158/0008-5472.CAN-07-2223
  • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008; 27:1932 - 1943; PMID: 18566586; http://dx.doi.org/10.1038/emboj.2008.120
  • Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008; 27:1919 - 1931; PMID: 18566587; http://dx.doi.org/10.1038/emboj.2008.119
  • Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, et al. mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011; 71:3246 - 3256; PMID: 21430067; http://dx.doi.org/10.1158/0008-5472.CAN-10-4058
  • Hernández-Negrete I, Carretero-Ortega J, Rosenfeldt H, Hernandez-Garcia R, Calderon-Salinas JV, Reyes-Cruz G, et al. P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J Biol Chem 2007; 282:23708 - 23715; PMID: 17565979; http://dx.doi.org/10.1074/jbc.M703771200
  • Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 2010; 29:3939 - 3951; PMID: 21045808; http://dx.doi.org/10.1038/emboj.2010.271
  • Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011; 144:757 - 768; PMID: 21376236; http://dx.doi.org/10.1016/j.cell.2011.02.014
  • Ghosh D, Srivastava GP, Xu D, Schulz LC, Roberts RM. A link between SIN1 (MAPKAP1) and poly(rC) binding protein 2 (PCBP2) in counteracting environmental stress. Proc Natl Acad Sci USA 2008; 105:11673 - 11678; PMID: 18687895; http://dx.doi.org/10.1073/pnas.0803182105
  • Banerjee S, Byrd JN, Gianino SM, Harpstrite SE, Rodriguez FJ, Tuskan RG, et al. The neurofibromatosis type 1 tumor suppressor controls cell growth by regulating signal transducer and activator of transcription-3 activity in vitro and in vivo. Cancer Res 2010; 70:1356 - 1366; PMID: 20124472; http://dx.doi.org/10.1158/0008-5472.CAN-09-2178
  • Saci A, Cantley LC, Carpenter CL. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell 2011; 42:50 - 61; PMID: 21474067; http://dx.doi.org/10.1016/j.molcel.2011.03.017
  • Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N, et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 2003; 112:1223 - 1233; PMID: 14561707
  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436:725 - 730; PMID: 16079851; http://dx.doi.org/10.1038/nature03918
  • Cichowski K, Santiago S, Jardim M, Johnson BW, Jacks T. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev 2003; 17:449 - 454; PMID: 12600938; http://dx.doi.org/10.1101/gad.1054703
  • Lee da Y, Yeh TH, Emnett RJ, White CR, Gutmann DH. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev 2010; 24:2317 - 2329; PMID: 20876733; http://dx.doi.org/10.1101/gad.1957110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.