524
Views
4
CrossRef citations to date
0
Altmetric
Extra Views

What makes the engine hum

Rad6, a cell cycle supercharger

&
Pages 249-252 | Received 08 Dec 2011, Accepted 12 Dec 2011, Published online: 15 Jan 2012

References

  • Enserink JM, Kolodner RD. An overview of Cdk1-controlled targets and processes. Cell Div 2010; 5:11; PMID: 20465793; http://dx.doi.org/10.1186/1747-1028-5-11
  • Wittenberg C, Reed SI. Cell cycle-dependent transcription in yeast: promoters, transcription factors and transcriptomes. Oncogene 2005; 24:2746 - 2755; PMID: 15838511; http://dx.doi.org/10.1038/sj.onc.1208606
  • Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev Cancer 2009; 9:738 - 748; PMID: 19776743; http://dx.doi.org/10.1038/nrc2718
  • Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 2004; 117:899 - 913; PMID: 15210111; http://dx.doi.org/10.1016/j.cell.2004.05.024
  • de Bruin RA, McDonald WH, Kalashnikova TI, Yates J 3rd, Wittenberg C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 2004; 117:887 - 898; PMID: 15210110; http://dx.doi.org/10.1016/j.cell.2004.05.025
  • Skotheim JM, Di Talia S, Siggia ED, Cross FR. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 2008; 454:291 - 296; PMID: 18633409; http://dx.doi.org/10.1038/nature07118
  • Zimmermann C, Chymkowitch P, Eldholm V, Putnam CD, Lindvall JM, Omerzu M, et al. A chemical-genetic screen to unravel the genetic network of CDC28/CDK1 links ubiquitin and Rad6-Bre1 to cell cycle progression. Proceedings of the National Academy of Sciences of the United States of America 2011;
  • Enserink JM, Hombauer H, Huang ME, Kolodner RD. Cdc28/Cdk1 positively and negatively affects genome stability in S. cerevisiae. J Cell Biol 2009; 185:423 - 437; PMID: 19398760; http://dx.doi.org/10.1083/jcb.200811083
  • Stolz A, Hilt W, Buchberger A, Wolf DH. Cdc48: a power machine in protein degradation. Trends Biochem Sci 2011; 36:515 - 523; PMID: 21741246; http://dx.doi.org/10.1016/j.tibs.2011.06.001
  • Hochstrasser M, Varshavsky A. In vivo degradation of a transcriptional regulator: the yeast alpha2 repressor. Cell 1990; 61:697 - 708; PMID: 2111732; http://dx.doi.org/10.1016/0092-8674(90)90481-S
  • Johnson ES, Ma PC, Ota IM, Varshavsky A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 1995; 270:17442 - 17456; PMID: 7615550; http://dx.doi.org/10.1074/jbc.270.29.17442
  • Ogiso Y, Sugiura R, Kamo T, Yanagiya S, Lu Y, Okazaki K, et al. Lub1 participates in ubiquitin homeostasis and stress response via maintenance of cellular ubiquitin contents in fission yeast. Mol Cell Biol 2004; 24:2324 - 2331; PMID: 14993272; http://dx.doi.org/10.1128/MCB.24.6.2324-31.2004
  • Rumpf S, Jentsch S. Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol Cell 2006; 21:261 - 269; PMID: 16427015; http://dx.doi.org/10.1016/j.molcel.2005.12.014
  • Lis ET, Romesberg FE. Role of Doa1 in the Saccharomyces cerevisiae DNA damage response. Mol Cell Biol 2006; 26:4122 - 4133; PMID: 16705165; http://dx.doi.org/10.1128/MCB.01640-05
  • Mullally JE, Chernova T, Wilkinson KD. Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain. Mol Cell Biol 2006; 26:822 - 830; PMID: 16428438; http://dx.doi.org/10.1128/MCB.26.3.822-30.2006
  • Game JC, Chernikova SB. The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification. DNA Repair (Amst) 2009; 8:470 - 482; PMID: 19230796; http://dx.doi.org/10.1016/j.dnarep.2009.01.007
  • Bartel B, Wunning I, Varshavsky A. The recognition component of the N-end rule pathway. EMBO J 1990; 9:3179 - 3189; PMID: 2209542
  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002; 419:135 - 141; PMID: 12226657; http://dx.doi.org/10.1038/nature00991
  • Robzyk K, Recht J, Osley MA. Rad6-dependent ubiquitination of histone H2B in yeast. Science 2000; 287:501 - 504; PMID: 10642555; http://dx.doi.org/10.1126/science.287.5452.501
  • Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 2003; 11:261 - 266; PMID: 12535538; http://dx.doi.org/10.1016/S1097-2765(02)00826-2
  • Rowley A, Johnston GC, Butler B, Werner-Washburne M, Singer RA. Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:1034 - 1041; PMID: 8380888
  • Manukyan A, Zhang J, Thippeswamy U, Yang J, Zavala N, Mudannayake MP, et al. Ccr4 alters cell size in yeast by modulating the timing of CLN1 and CLN2 expression. Genetics 2008; 179:345 - 357; PMID: 18493058; http://dx.doi.org/10.1534/genetics.108.086744
  • Sudbery PE, Goodey AR, Carter BL. Genes which control cell proliferation in the yeast Saccharomyces cerevisiae. Nature 1980; 288:401 - 404; PMID: 7001255; http://dx.doi.org/10.1038/288401a0
  • Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M. Systematic identification of pathways that couple cell growth and division in yeast. Science 2002; 297:395 - 400; PMID: 12089449; http://dx.doi.org/10.1126/science.1070850
  • Ni L, Snyder M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 2001; 12:2147 - 2170; PMID: 11452010
  • Vitaliano-Prunier A, Menant A, Hobeika M, Geli V, Gwizdek C, Dargemont C. Ubiquitylation of the COMPASS component Swd2 links H2B ubiquitylation to H3K4 trimethylation. Nat Cell Biol 2008; 10:1365 - 1371; PMID: 18849979; http://dx.doi.org/10.1038/ncb1796
  • Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, Haug J, et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell cycle regulation of H3K79 dimethylation. Mol Cell 2009; 35:626 - 641; PMID: 19682934; http://dx.doi.org/10.1016/j.molcel.2009.07.017
  • Hanna J, Meides A, Zhang DP, Finley D. A ubiquitin stress response induces altered proteasome composition. Cell 2007; 129:747 - 759; PMID: 17512408; http://dx.doi.org/10.1016/j.cell.2007.03.042
  • Berry DB, Guan Q, Hose J, Haroon S, Gebbia M, Heisler LE, et al. Multiple means to the same end: the genetic basis of acquired stress resistance in yeast. PLoS Genet 2011; 7:1002353; PMID: 22102822; http://dx.doi.org/10.1371/journal.pgen.1002353
  • Rowley A, Johnston GC, Butler B, Werner-Washburne M, Singer RA. Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:1034 - 1041; PMID: 8380888
  • Raboy B, Marom A, Dor Y, Kulka RG. Heat-induced cell cycle arrest of Saccharomyces cerevisiae: involvement of the RAD6/UBC2 and WSC2 genes in its reversal. Mol Microbiol 1999; 32:729 - 739; PMID: 10361277; http://dx.doi.org/10.1046/j.1365-2958.1999.01389.x
  • Fu X, Ng C, Feng D, Liang C. Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p. J Cell Biol 2003; 163:21 - 26; PMID: 14557244; http://dx.doi.org/10.1083/jcb.200307025
  • Peter M, Herskowitz I. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 1994; 265:1228 - 1231; PMID: 8066461; http://dx.doi.org/10.1126/science.8066461
  • Chang F, Herskowitz I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 1990; 63:999 - 1011; PMID: 2147873; http://dx.doi.org/10.1016/0092-8674(90)90503-7
  • Alberghina L, Rossi RL, Querin L, Wanke V, Vanoni M. A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. J Cell Biol 2004; 167:433 - 443; PMID: 15520229; http://dx.doi.org/10.1083/jcb.200405102
  • Game JC, Chernikova SB. The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification. DNA Repair (Amst) 2009; 8:470 - 482; PMID: 19230796; http://dx.doi.org/10.1016/j.dnarep.2009.01.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.