2,436
Views
38
CrossRef citations to date
0
Altmetric
Extra Views

From oncogene to tumor suppressor

The dual role of Myc in leukemia

, &
Pages 1757-1764 | Published online: 01 May 2012

References

  • Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB. Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 2004; 4:562 - 8; http://dx.doi.org/10.1038/nrc1393; PMID: 15229481
  • Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. Sequence-specific DNA binding by the c-Myc protein. Science 1990; 250:1149 - 51; http://dx.doi.org/10.1126/science.2251503; PMID: 2251503
  • Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991; 251:1211 - 7; http://dx.doi.org/10.1126/science.2006410; PMID: 2006410
  • Amati B, Alevizopoulos K, Vlach J. Myc and the cell cycle. Front Biosci 1998; 3:d250 - 68; PMID: 9468463
  • Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999; 19:1 - 11; PMID: 9858526
  • Eilers M. Control of cell proliferation by Myc family genes. Mol Cells 1999; 9:1 - 6; PMID: 10102563
  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001; 3:400 - 8; http://dx.doi.org/10.1038/35070086; PMID: 11283614
  • Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001; 3:392 - 9; http://dx.doi.org/10.1038/35070076; PMID: 11283613
  • Inghirami G, Grignani F, Sternas L, Lombardi L, Knowles DM, Dalla-Favera R. Down-regulation of LFA-1 adhesion receptors by C-myc oncogene in human B lymphoblastoid cells. Science 1990; 250:682 - 6; http://dx.doi.org/10.1126/science.2237417; PMID: 2237417
  • Seoane J, Le HV, Massagué J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 2002; 419:729 - 34; http://dx.doi.org/10.1038/nature01119; PMID: 12384701
  • Herold S, Wanzel M, Beuger V, Frohme C, Beul D, Hillukkala T, et al. Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 2002; 10:509 - 21; http://dx.doi.org/10.1016/S1097-2765(02)00633-0; PMID: 12408820
  • Yang W, Shen J, Wu M, Arsura M, FitzGerald M, Suldan Z, et al. Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 2001; 20:1688 - 702; http://dx.doi.org/10.1038/sj.onc.1204245; PMID: 11313917
  • Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 2002; 16:2699 - 712; http://dx.doi.org/10.1101/gad.1021202; PMID: 12381668
  • Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol 2001; 11:558 - 68; http://dx.doi.org/10.1016/S0960-9822(01)00154-3; PMID: 11369200
  • Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 2001; 28:165 - 8; http://dx.doi.org/10.1038/88889; PMID: 11381265
  • Watt FM, Frye M, Benitah SA. MYC in mammalian epidermis: how can an oncogene stimulate differentiation?. Nat Rev Cancer 2008; 8:234 - 42; http://dx.doi.org/10.1038/nrc2328; PMID: 18292777
  • Gallant P, Steiger D. Myc’s secret life without Max. Cell Cycle 2009; 8:3848 - 53; http://dx.doi.org/10.4161/cc.8.23.10088; PMID: 19887915
  • Steiger D, Furrer M, Schwinkendorf D, Gallant P. Max-independent functions of Myc in Drosophila melanogaster. Nat Genet 2008; 40:1084 - 91; http://dx.doi.org/10.1038/ng.178; PMID: 19165923
  • Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 2005; 6:635 - 45; http://dx.doi.org/10.1038/nrm1703; PMID: 16064138
  • Roy AL, Carruthers C, Gutjahr T, Roeder RG. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 1993; 365:359 - 61; http://dx.doi.org/10.1038/365359a0; PMID: 8377829
  • Shrivastava A, Saleque S, Kalpana GV, Artandi S, Goff SP, Calame K. Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 1993; 262:1889 - 92; http://dx.doi.org/10.1126/science.8266081; PMID: 8266081
  • Gartel AL, Ye X, Goufman E, Shianov P, Hay N, Najmabadi F, et al. Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci U S A 2001; 98:4510 - 5; http://dx.doi.org/10.1073/pnas.081074898; PMID: 11274368
  • Izumi H, Molander C, Penn LZ, Ishisaki A, Kohno K, Funa K. Mechanism for the transcriptional repression by c-Myc on PDGF beta-receptor. J Cell Sci 2001; 114:1533 - 44; PMID: 11282029
  • Huang Z, Traugh JA, Bishop JM. Negative control of the Myc protein by the stress-responsive kinase Pak2. Mol Cell Biol 2004; 24:1582 - 94; http://dx.doi.org/10.1128/MCB.24.4.1582-1594.2004; PMID: 14749374
  • Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377:397 - 404; http://dx.doi.org/10.1038/377397a0; PMID: 7566114
  • Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377:454 - 7; http://dx.doi.org/10.1038/377454a0; PMID: 7566127
  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85:403 - 14; http://dx.doi.org/10.1016/S0092-8674(00)81118-6; PMID: 8616895
  • Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, et al. Role of CBP/P300 in nuclear receptor signalling. Nature 1996; 383:99 - 103; http://dx.doi.org/10.1038/383099a0; PMID: 8779723
  • Heinzel T, Lavinsky RM, Mullen TM, Söderstrom M, Laherty CD, Torchia J, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997; 387:43 - 8; http://dx.doi.org/10.1038/387043a0; PMID: 9139820
  • Kurland JF, Tansey WP. Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res 2008; 68:3624 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-07-6552; PMID: 18483244
  • Vervoorts J, Lüscher-Firzlaff JM, Rottmann S, Lilischkis R, Walsemann G, Dohmann K, et al. Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep 2003; 4:484 - 90; http://dx.doi.org/10.1038/sj.embor.embor821; PMID: 12776737
  • Gratas C, Menot ML, Dresch C, Chomienne C. Retinoid acid supports granulocytic but not erythroid differentiation of myeloid progenitors in normal bone marrow cells. Leukemia 1993; 7:1156 - 62; PMID: 8350615
  • Larsson LG, Henriksson MA. The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010; 316:1429 - 37; http://dx.doi.org/10.1016/j.yexcr.2010.03.025; PMID: 20382143
  • Leon J, Ferrandiz N, Acosta JC, Delgado MD. Inhibition of cell differentiation: a critical mechanism for MYC-mediated carcinogenesis?. Cell Cycle 2009; 8:1148 - 57; http://dx.doi.org/10.4161/cc.8.8.8126; PMID: 19282668
  • Uribesalgo I, Buschbeck M, Gutiérrez A, Teichmann S, Demajo S, Kuebler B, et al. E-box-independent regulation of transcription and differentiation by MYC. Nat Cell Biol 2011; 13:1443 - 9; http://dx.doi.org/10.1038/ncb2355; PMID: 22020439
  • Yung BY. c-Myc-mediated expression of nucleophosmin/B23 decreases during retinoic acid-induced differentiation of human leukemia HL-60 cells. FEBS Lett 2004; 578:211 - 6; http://dx.doi.org/10.1016/j.febslet.2004.08.089; PMID: 15589822
  • Nisimoto Y, Ogawa H. Interaction between p21-activated protein kinase and Rac during differentiation of HL-60 human promyelocytic leukemia cell induced by all-trans-retinoic acid. Eur J Biochem 2002; 269:2622 - 9; http://dx.doi.org/10.1046/j.1432-1033.2002.02939.x; PMID: 12027902
  • Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P, et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 2011; 19:776 - 91; http://dx.doi.org/10.1016/j.ccr.2011.05.008; PMID: 21665151
  • Miralles F, Posern G, Zaromytidou AI, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 2003; 113:329 - 42; http://dx.doi.org/10.1016/S0092-8674(03)00278-2; PMID: 12732141
  • Vartiainen MK, Guettler S, Larijani B, Treisman R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 2007; 316:1749 - 52; http://dx.doi.org/10.1126/science.1141084; PMID: 17588931
  • Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 2009; 11:257 - 68; http://dx.doi.org/10.1038/ncb1833; PMID: 19198601
  • Connelly JT, Gautrot JE, Trappmann B, Tan DW, Donati G, Huck WT, et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol 2010; 12:711 - 8; http://dx.doi.org/10.1038/ncb2074; PMID: 20581838
  • Connelly JT, Mishra A, Gautrot JE, Watt FM. Shape-induced terminal differentiation of human epidermal stem cells requires p38 and is regulated by histone acetylation. PLoS One 2011; 6:e27259; http://dx.doi.org/10.1371/journal.pone.0027259; PMID: 22073300
  • Roig J, Traugh JA. p21-activated protein kinase gamma-PAK is activated by ionizing radiation and other DNA-damaging agents. Similarities and differences to alpha-PAK. J Biol Chem 1999; 274:31119 - 22; http://dx.doi.org/10.1074/jbc.274.44.31119; PMID: 10531298
  • Roig J, Huang Z, Lytle C, Traugh JA. p21-activated protein kinase gamma-PAK is translocated and activated in response to hyperosmolarity. Implication of Cdc42 and phosphoinositide 3-kinase in a two-step mechanism for gamma-PAK activation. J Biol Chem 2000; 275:16933 - 40; http://dx.doi.org/10.1074/jbc.M001627200; PMID: 10748040
  • Roig J, Traugh JA. Cytostatic p21 G protein-activated protein kinase gamma-PAK. Vitam Horm 2001; 62:167 - 98; http://dx.doi.org/10.1016/S0083-6729(01)62004-1; PMID: 11345898
  • Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci 2000; 25:257 - 60; http://dx.doi.org/10.1016/S0968-0004(00)01595-4; PMID: 10838561
  • Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 2009; 461:819 - 22; http://dx.doi.org/10.1038/nature08448; PMID: 19783980
  • Li J, Gorospe M, Hutter D, Barnes J, Keyse SM, Liu Y. Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol Cell Biol 2001; 21:8213 - 24; http://dx.doi.org/10.1128/MCB.21.23.8213-8224.2001; PMID: 11689710
  • Soloaga A, Thomson S, Wiggin GR, Rampersaud N, Dyson MH, Hazzalin CA, et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 2003; 22:2788 - 97; http://dx.doi.org/10.1093/emboj/cdg273; PMID: 12773393
  • Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 2004; 36:738 - 43; http://dx.doi.org/10.1038/ng1378; PMID: 15208625
  • Illi B, Scopece A, Nanni S, Farsetti A, Morgante L, Biglioli P, et al. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res 2005; 96:501 - 8; http://dx.doi.org/10.1161/01.RES.0000159181.06379.63; PMID: 15705964
  • Schmeck B, Beermann W, van Laak V, Zahlten J, Opitz B, Witzenrath M, et al. Intracellular bacteria differentially regulated endothelial cytokine release by MAPK-dependent histone modification. J Immunol 2005; 175:2843 - 50; PMID: 16116170
  • Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA. Activated signal transduction kinases frequently occupy target genes. Science 2006; 313:533 - 6; http://dx.doi.org/10.1126/science.1127677; PMID: 16873666
  • Vicent GP, Ballaré C, Nacht AS, Clausell J, Subtil-Rodríguez A, Quiles I, et al. Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 2006; 24:367 - 81; http://dx.doi.org/10.1016/j.molcel.2006.10.011; PMID: 17081988
  • Lee ER, McCool KW, Murdoch FE, Fritsch MK. Dynamic changes in histone H3 phosphoacetylation during early embryonic stem cell differentiation are directly mediated by mitogen- and stress-activated protein kinase 1 via activation of MAPK pathways. J Biol Chem 2006; 281:21162 - 72; http://dx.doi.org/10.1074/jbc.M602734200; PMID: 16728397
  • Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, et al. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 2002; 3:767 - 73; http://dx.doi.org/10.1093/embo-reports/kvf157; PMID: 12151336
  • Benitah SA, Frye M, Glogauer M, Watt FM. Stem cell depletion through epidermal deletion of Rac1. Science 2005; 309:933 - 5; http://dx.doi.org/10.1126/science.1113579; PMID: 16081735
  • Smith AP, Verrecchia A, Fagà G, Doni M, Perna D, Martinato F, et al. A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene 2009; 28:422 - 30; http://dx.doi.org/10.1038/onc.2008.395; PMID: 18978814
  • Perna D, Fagà G, Verrecchia A, Gorski MM, Barozzi I, Narang V, et al. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 2011; http://dx.doi.org/10.1038/onc.2011.359; PMID: 21860422
  • Gebhardt A, Frye M, Herold S, Benitah SA, Braun K, Samans B, et al. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J Cell Biol 2006; 172:139 - 49; http://dx.doi.org/10.1083/jcb.200506057; PMID: 16391002
  • Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 2006; 16:971 - 81; http://dx.doi.org/10.1016/j.cub.2006.04.027; PMID: 16713953
  • Nascimento EM, Cox CL, MacArthur S, Hussain S, Trotter M, Blanco S, et al. The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nat Cell Biol 2011; 13:1395 - 405; http://dx.doi.org/10.1038/ncb2385; PMID: 22101514
  • Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 2009; 4:427 - 39; http://dx.doi.org/10.1016/j.stem.2009.04.014; PMID: 19427292
  • Murphy MJ, Wilson A, Trumpp A. More than just proliferation: Myc function in stem cells. Trends Cell Biol 2005; 15:128 - 37; http://dx.doi.org/10.1016/j.tcb.2005.01.008; PMID: 15752976
  • Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 18:2747 - 63; http://dx.doi.org/10.1101/gad.313104; PMID: 15545632
  • Williams DA, Zheng Y, Cancelas JA. Rho GTPases and regulation of hematopoietic stem cell localization. Methods Enzymol 2008; 439:365 - 93; http://dx.doi.org/10.1016/S0076-6879(07)00427-2; PMID: 18374178
  • Purton LE, Bernstein ID, Collins SJ. All-trans retinoic acid delays the differentiation of primitive hematopoietic precursors (lin-c-kit+Sca-1(+)) while enhancing the terminal maturation of committed granulocyte/monocyte progenitors. Blood 1999; 94:483 - 95; PMID: 10397716
  • Purton LE, Bernstein ID, Collins SJ. All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood 2000; 95:470 - 7; PMID: 10627451
  • Conacci-Sorrell M, Ngouenet C, Eisenman RN. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation. Cell 2010; 142:480 - 93; http://dx.doi.org/10.1016/j.cell.2010.06.037; PMID: 20691906
  • Zhu GH, Huang J, Bi Y, Su Y, Tang Y, He BC, et al. Activation of RXR and RAR signaling promotes myogenic differentiation of myoblastic C2C12 cells. Differentiation 2009; 78:195 - 204; http://dx.doi.org/10.1016/j.diff.2009.06.001; PMID: 19560855
  • Nowak D, Stewart D, Koeffler HP. Differentiation therapy of leukemia: 3 decades of development. Blood 2009; 113:3655 - 65; http://dx.doi.org/10.1182/blood-2009-01-198911; PMID: 19221035
  • Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72:567 - 72; PMID: 3165295
  • Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295:1079 - 82; http://dx.doi.org/10.1126/science.1065173; PMID: 11834837
  • Di Croce L. Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet 2005; 14:Spec No 1 R77 - 84; http://dx.doi.org/10.1093/hmg/ddi109; PMID: 15809276
  • Uribesalgo I, Di Croce L. Dynamics of epigenetic modifications in leukemia. Brief Funct Genomics 2011; 10:18 - 29; http://dx.doi.org/10.1093/bfgp/elr002; PMID: 21258047
  • Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478:524 - 8; http://dx.doi.org/10.1038/nature10334; PMID: 21814200
  • Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478:529 - 33; http://dx.doi.org/10.1038/nature10509; PMID: 21964340
  • Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146:904 - 17; http://dx.doi.org/10.1016/j.cell.2011.08.017; PMID: 21889194
  • Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A 2011; 108:16669 - 74; http://dx.doi.org/10.1073/pnas.1108190108; PMID: 21949397
  • Slavutsky I, de Vinuesa ML, Larripa I, Dupont J, de Salum SB. Translocation (2;3) in hematologic malignancies. Cancer Genet Cytogenet 1986; 21:335 - 42; http://dx.doi.org/10.1016/0165-4608(86)90214-1; PMID: 3456824
  • Dierlamm J, Rosenberg C, Stul M, Pittaluga S, Wlodarska I, Michaux L, et al. Characteristic pattern of chromosomal gains and losses in marginal zone B cell lymphoma detected by comparative genomic hybridization. Leukemia 1997; 11:747 - 58; http://dx.doi.org/10.1038/sj.leu.2400635; PMID: 9180302
  • Lafage-Pochitaloff M, Courcoul M, Simonetti J, Sainty D, Dastugue N, Tabilio A, et al. Expression of the ETS2 and transferrin receptor genes in Philadelphia-positive chronic myeloid leukemia patients with a reciprocal t(3;21). Genes Chromosomes Cancer 1992; 5:1 - 13; http://dx.doi.org/10.1002/gcc.2870050102; PMID: 1384656
  • Perlman EJ, Lumadue JA, Hawkins AL, Cohen K, Colombani P, Griffin CA. Primary cutaneous neuroendocrine tumors. Diagnostic use of cytogenetic and MIC2 analysis. Cancer Genet Cytogenet 1995; 82:30 - 4; http://dx.doi.org/10.1016/0165-4608(94)00271-C; PMID: 7627931
  • Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S. Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 1998; 17:2463 - 72; http://dx.doi.org/10.1038/sj.onc.1202199; PMID: 9824157
  • Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455:679 - 83; http://dx.doi.org/10.1038/nature07260; PMID: 18716624
  • Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 1993; 72:233 - 45; http://dx.doi.org/10.1016/0092-8674(93)90663-B; PMID: 8425220
  • Amati B, Littlewood TD, Evan GI, Land H. The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J 1993; 12:5083 - 7; PMID: 8262051
  • Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A 2001; 98:10398 - 403; http://dx.doi.org/10.1073/pnas.171321298; PMID: 11526243
  • Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Viré E, et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 2007; 11:513 - 25; http://dx.doi.org/10.1016/j.ccr.2007.04.009; PMID: 17560333
  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367:645 - 8; http://dx.doi.org/10.1038/367645a0; PMID: 7509044
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3:730 - 7; http://dx.doi.org/10.1038/nm0797-730; PMID: 9212098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.