1,223
Views
21
CrossRef citations to date
0
Altmetric
Report

dj-1β regulates oxidative stress, insulin-like signaling and development in Drosophila melanogaster

, , , , , , & show all
Pages 3876-3886 | Published online: 14 Sep 2012

References

  • Wilson MA. The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid Redox Signal 2011; 15:111 - 22; http://dx.doi.org/10.1089/ars.2010.3481; PMID: 20812780
  • Zhang L, Shimoji M, Thomas B, Moore DJ, Yu SW, Marupudi NI, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005; 14:2063 - 73; http://dx.doi.org/10.1093/hmg/ddi211; PMID: 15944198
  • Lev N, Ickowicz D, Melamed E, Offen D. Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection. Neurotoxicology 2008; 29:397 - 405; http://dx.doi.org/10.1016/j.neuro.2008.01.007; PMID: 18377993
  • Bezard E, Przedborski S. A tale on animal models of Parkinson’s disease. Mov Disord 2011; 26:993 - 1002; http://dx.doi.org/10.1002/mds.23696; PMID: 21626544
  • Hayashi T, Ishimori C, Takahashi-Niki K, Taira T, Kim YC, Maita H, et al. DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem Biophys Res Commun 2009; 390:667 - 72; http://dx.doi.org/10.1016/j.bbrc.2009.10.025; PMID: 19822128
  • Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, Wes PD, et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr Biol 2005; 15:1572 - 7; http://dx.doi.org/10.1016/j.cub.2005.07.064; PMID: 16139213
  • Park J, Kim SY, Cha GH, Lee SB, Kim S, Chung J. Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene 2005; 361:133 - 9; http://dx.doi.org/10.1016/j.gene.2005.06.040; PMID: 16203113
  • Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA 2007; 104:14807 - 12; http://dx.doi.org/10.1073/pnas.0703219104; PMID: 17766438
  • Fernandez-Ayala DJ, Sanz A, Vartiainen S, Kemppainen KK, Babusiak M, Mustalahti E, et al. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab 2009; 9:449 - 60; http://dx.doi.org/10.1016/j.cmet.2009.03.004; PMID: 19416715
  • Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A. A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 2000; 97:4138 - 43; http://dx.doi.org/10.1073/pnas.070501997; PMID: 10759557
  • Sanz A, Fernández-Ayala DJ, Stefanatos RK, Jacobs HT. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging (Albany NY) 2010; 2:200 - 23; PMID: 20453260
  • Yang W, Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 2010; 8:e1000556; http://dx.doi.org/10.1371/journal.pbio.1000556; PMID: 21151885
  • Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 2006; 20:1064 - 73; http://dx.doi.org/10.1096/fj.05-5568com; PMID: 16770005
  • Martínez A, Portero-Otin M, Pamplona R, Ferrer I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 2010; 20:281 - 97; http://dx.doi.org/10.1111/j.1750-3639.2009.00326.x; PMID: 19725834
  • Jacobson J, Lambert AJ, Portero-Otín M, Pamplona R, Magwere T, Miwa S, et al. Biomarkers of aging in Drosophila. Aging Cell 2010; 9:466 - 77; http://dx.doi.org/10.1111/j.1474-9726.2010.00573.x; PMID: 20367621
  • Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G, Kuhlow D, et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 2012; 15:451 - 65; http://dx.doi.org/10.1016/j.cmet.2012.02.013; PMID: 22482728
  • Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, et al. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 2011; 51:1575 - 82; http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.020; PMID: 21839827
  • Karpac J, Hull-Thompson J, Falleur M, Jasper H. JNK signaling in insulin-producing cells is required for adaptive responses to stress in Drosophila. Aging Cell 2009; 8:288 - 95; http://dx.doi.org/10.1111/j.1474-9726.2009.00476.x; PMID: 19627268
  • Wang PY, Neretti N, Whitaker R, Hosier S, Chang C, Lu D, et al. Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci USA 2009; 106:9262 - 7; http://dx.doi.org/10.1073/pnas.0904115106; PMID: 19470468
  • Stefanatos R, Sanz A. Mitochondrial complex I: a central regulator of the aging process. Cell Cycle 2011; 10:1528 - 32; http://dx.doi.org/10.4161/cc.10.10.15496; PMID: 21471732
  • Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 2009; 139:149 - 60; http://dx.doi.org/10.1016/j.cell.2009.07.034; PMID: 19804760
  • Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, Hur JH, et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab 2011; 14:623 - 34; http://dx.doi.org/10.1016/j.cmet.2011.09.013; PMID: 22055505
  • Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410:227 - 30; http://dx.doi.org/10.1038/35065638; PMID: 11242085
  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper MD, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011; 477:482 - 5; http://dx.doi.org/10.1038/nature10296; PMID: 21938067
  • Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101:15998 - 6003; http://dx.doi.org/10.1073/pnas.0404184101; PMID: 15520384
  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 2008; 135:907 - 18; http://dx.doi.org/10.1016/j.cell.2008.10.025; PMID: 19041753
  • Slaidina M, Delanoue R, Gronke S, Partridge L, Léopold P. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 2009; 17:874 - 84; http://dx.doi.org/10.1016/j.devcel.2009.10.009; PMID: 20059956
  • van der Brug MP, Blackinton J, Chandran J, Hao LY, Lal A, Mazan-Mamczarz K, et al. RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc Natl Acad Sci USA 2008; 105:10244 - 9; http://dx.doi.org/10.1073/pnas.0708518105; PMID: 18626009
  • Missirlis F, Hu J, Kirby K, Hilliker AJ, Rouault TA, Phillips JP. Compartment-specific protection of iron-sulfur proteins by superoxide dismutase. J Biol Chem 2003; 278:47365 - 9; http://dx.doi.org/10.1074/jbc.M307700200; PMID: 12972424
  • Van Raamsdonk JM, Hekimi S. Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci USA 2012; 109:5785 - 90; http://dx.doi.org/10.1073/pnas.1116158109; PMID: 22451939
  • Mukherjee S, Forde R, Belton A, Duttaroy A. SOD2, the principal scavenger of mitochondrial superoxide, is dispensable for embryogenesis and imaginal tissue development but essential for adult survival. Fly (Austin) 2011; 5:39 - 46; PMID: 21212740
  • Godenschwege T, Forde R, Davis CP, Paul A, Beckwith K, Duttaroy A. Mitochondrial superoxide radicals differentially affect muscle activity and neural function. Genetics 2009; 183:175 - 84; http://dx.doi.org/10.1534/genetics.109.103515; PMID: 19546321
  • Sohal RS. Effect of hydrogen peroxide administration on life span, superoxide dismutase, catalase, and glutathione in the adult housefly, Musca domestica. Exp Gerontol 1988; 23:211 - 6; http://dx.doi.org/10.1016/0531-5565(88)90008-3; PMID: 2849553
  • Martin I, Jones MA, Grotewiel M. Manipulation of Sod1 expression ubiquitously, but not in the nervous system or muscle, impacts age-related parameters in Drosophila. FEBS Lett 2009; 583:2308 - 14; http://dx.doi.org/10.1016/j.febslet.2009.06.023; PMID: 19540235
  • Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, et al. Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 2007; 8:R262; http://dx.doi.org/10.1186/gb-2007-8-12-r262; PMID: 18067683
  • Ristow M, Zarse K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 2010; 45:410 - 8; http://dx.doi.org/10.1016/j.exger.2010.03.014; PMID: 20350594
  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43:477 - 503; http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.034; PMID: 17640558
  • Kirby K, Hu J, Hilliker AJ, Phillips JP. RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci USA 2002; 99:16162 - 7; http://dx.doi.org/10.1073/pnas.252342899; PMID: 12456885
  • Mockett RJ, Sohal BH, Sohal RS. Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic Biol Med 2010; 49:2028 - 31; http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.029; PMID: 20923705
  • Hao LY, Giasson BI, Bonini NM. DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc Natl Acad Sci USA 2010; 107:9747 - 52; http://dx.doi.org/10.1073/pnas.0911175107; PMID: 20457924
  • Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free Radic Biol Med 2011; 51:327 - 36; http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.010; PMID: 21619928
  • Owusu-Ansah E, Yavari A, Mandal S, Banerjee U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet 2008; 40:356 - 61; http://dx.doi.org/10.1038/ng.2007.50; PMID: 18246068
  • Grönke S, Clarke DF, Broughton S, Andrews TD, Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 2010; 6:e1000857; http://dx.doi.org/10.1371/journal.pgen.1000857; PMID: 20195512
  • Yang Y, Gehrke S, Haque ME, Imai Y, Kosek J, Yang L, et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci USA 2005; 102:13670 - 5; http://dx.doi.org/10.1073/pnas.0504610102; PMID: 16155123
  • Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005; 121:115 - 25; http://dx.doi.org/10.1016/j.cell.2005.02.030; PMID: 15820683
  • Karpac J, Younger A, Jasper H. Dynamic coordination of innate immune signaling and insulin signaling regulates systemic responses to localized DNA damage. Dev Cell 2011; 20:841 - 54; http://dx.doi.org/10.1016/j.devcel.2011.05.011; PMID: 21664581
  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310:314 - 7; http://dx.doi.org/10.1126/science.1117728; PMID: 16224023
  • Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc 2011; 43:1017 - 24; http://dx.doi.org/10.1249/MSS.0b013e318203afa3; PMID: 21085043
  • Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr 2011; 93:891S - 6; http://dx.doi.org/10.3945/ajcn.110.001925; PMID: 21325438
  • Yang W, Hekimi S. Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell 2010; 9:433 - 47; http://dx.doi.org/10.1111/j.1474-9726.2010.00571.x; PMID: 20346072
  • Hur JH, Cho J, Walker DW. Aging: Dial M for Mitochondria. Aging (Albany NY) 2010; 2:69 - 73; PMID: 20228940
  • Dell’agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, et al. Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 2007; 16:431 - 44; http://dx.doi.org/10.1093/hmg/ddl477; PMID: 17210671
  • Kuang J, Ebert PR. The failure to extend lifespan via disruption of complex II is linked to preservation of dynamic control of energy metabolism. Mitochondrion 2011; PMID: 22122855
  • Copeland JM, Cho J, Lo T Jr., Hur JH, Bahadorani S, Arabyan T, et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 2009; 19:1591 - 8; http://dx.doi.org/10.1016/j.cub.2009.08.016; PMID: 19747824
  • Bosch-Presegué L, Raurell-Vila H, Marazuela-Duque A, Kane-Goldsmith N, Valle A, Oliver J, et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol Cell 2011; 42:210 - 23; http://dx.doi.org/10.1016/j.molcel.2011.02.034; PMID: 21504832
  • Banerjee KK, Ayyub C, Sengupta S, Kolthur-Seetharam U. dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies. Aging (Albany NY) 2012; 4:206 - 23; PMID: 22411915
  • Sorensen M, Sanz A, Gómez J, Pamplona R, Portero-Otín M, Gredilla R, et al. Effects of fasting on oxidative stress in rat liver mitochondria. Free Radic Res 2006; 40:339 - 47; http://dx.doi.org/10.1080/10715760500250182; PMID: 16517498
  • Bauer J, Antosh M, Chang C, Schorl C, Kolli S, Neretti N, et al. Comparative transcriptional profiling identifies takeout as a gene that regulates life span. Aging (Albany NY) 2010; 2:298 - 310; PMID: 20519778
  • Jang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, Liang H, et al. Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 2010; 24:1376 - 90; http://dx.doi.org/10.1096/fj.09-146308; PMID: 20040516
  • Haselton AT, Fridell YW. Adult Drosophila melanogaster as a model for the study of glucose homeostasis. Aging (Albany NY) 2010; 2:523 - 6; PMID: 20689157
  • Broughton S, Alic N, Slack C, Bass T, Ikeya T, Vinti G, et al. Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One 2008; 3:e3721; http://dx.doi.org/10.1371/journal.pone.0003721; PMID: 19005568
  • de Magalhães JP, Church GM. Cells discover fire: employing reactive oxygen species in development and consequences for aging. Exp Gerontol 2006; 41:1 - 10; http://dx.doi.org/10.1016/j.exger.2005.09.002; PMID: 16226003
  • Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 1995; 18:775 - 94; http://dx.doi.org/10.1016/0891-5849(94)00198-S; PMID: 7750801
  • Lee S, Tak E, Lee J, Rashid MA, Murphy MP, Ha J, et al. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res 2011; 21:817 - 34; http://dx.doi.org/10.1038/cr.2011.55; PMID: 21445095
  • Furukawa A, Tada-Oikawa S, Kawanishi S, Oikawa S. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion. Cell Physiol Biochem 2007; 20:45 - 54; PMID: 17595514
  • Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 2011; 14:819 - 29; http://dx.doi.org/10.1016/j.cmet.2011.10.010; PMID: 22100409
  • Mair W, Piper MD, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 2005; 3:e223; http://dx.doi.org/10.1371/journal.pbio.0030223; PMID: 16000018
  • Sanz A, Stefanatos R, McIlroy G. Production of reactive oxygen species by the mitochondrial electron transport chain in Drosophila melanogaster. J Bioenerg Biomembr 2010; 42:135 - 42; http://dx.doi.org/10.1007/s10863-010-9281-z; PMID: 20300811
  • Sanz A, Soikkeli M, Portero-Otín M, Wilson A, Kemppainen E, McIlroy G, et al. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction. Proc Natl Acad Sci USA 2010; 107:9105 - 10; http://dx.doi.org/10.1073/pnas.0911539107; PMID: 20435911

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.