1,080
Views
24
CrossRef citations to date
0
Altmetric
Report

REV7 is required for anaphase-promoting complex-dependent ubiquitination and degradation of translesion DNA polymerase REV1

, &
Pages 365-378 | Published online: 15 Jan 2012

References

  • McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 2008; 18:148 - 61; http://dx.doi.org/10.1038/cr.2008.4; PMID: 18166979
  • Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 2005; 74:317 - 53; http://dx.doi.org/10.1146/annurev.biochem.74.082803.133250; PMID: 15952890
  • Lange SS, Takata K, Wood RD. DNA polymerases and cancer. Nat Rev Cancer 2011; 11:96 - 110; http://dx.doi.org/10.1038/nrc2998; PMID: 21258395
  • Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 2009; 73:134 - 54; http://dx.doi.org/10.1128/MMBR.00034-08; PMID: 19258535
  • Wittschieben JP, Patil V, Glushets V, Robinson LJ, Kusewitt DF, Wood RD. Loss of DNA polymerase ζ enhances spontaneous tumorigenesis. Cancer Res 2010; 70:2770 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-09-4267; PMID: 20215524
  • Doles J, Oliver TG, Cameron ER, Hsu G, Jacks T, Walker GC, et al. Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc Natl Acad Sci USA 2010; 107:20786 - 91; http://dx.doi.org/10.1073/pnas.1011409107; PMID: 21068376
  • Kim H, Yang K, Dejsuphong D, D’Andrea AD. Regulation of Rev1 by the Fanconi anemia core complex. Nat Struct Mol Biol 2012; 19:164 - 70; http://dx.doi.org/10.1038/nsmb.2222; PMID: 22266823
  • Kim N, Mudrak SV, Jinks-Robertson S. The dCMP transferase activity of yeast Rev1 is biologically relevant during the bypass of endogenously generated AP sites. DNA Repair (Amst) 2011; 10:1262 - 71; http://dx.doi.org/10.1016/j.dnarep.2011.09.017; PMID: 22024240
  • Wiltrout ME, Walker GC. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant. Genetics 2011; 187:21 - 35; http://dx.doi.org/10.1534/genetics.110.124172; PMID: 20980236
  • Guo C, Sonoda E, Tang TS, Parker JL, Bielen AB, Takeda S, et al. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo.. Mol Cell 2006; 23:265 - 71; http://dx.doi.org/10.1016/j.molcel.2006.05.038; PMID: 16857592
  • Wood A, Garg P, Burgers PM. A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage. J Biol Chem 2007; 282:20256 - 63; http://dx.doi.org/10.1074/jbc.M702366200; PMID: 17517887
  • Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K, et al. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J 2003; 22:6621 - 30; http://dx.doi.org/10.1093/emboj/cdg626; PMID: 14657033
  • Ohashi E, Hanafusa T, Kamei K, Song I, Tomida J, Hashimoto H, et al. Identification of a novel REV1-interacting motif necessary for DNA polymerase κ function. Genes Cells 2009; 14:101 - 11; http://dx.doi.org/10.1111/j.1365-2443.2008.01255.x; PMID: 19170759
  • Ross AL, Simpson LJ, Sale JE. Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1. Nucleic Acids Res 2005; 33:1280 - 9; http://dx.doi.org/10.1093/nar/gki279; PMID: 15741181
  • Acharya N, Johnson RE, Prakash S, Prakash L. Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase ζ for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 2006; 26:9555 - 63; http://dx.doi.org/10.1128/MCB.01671-06; PMID: 17030609
  • Acharya N, Haracska L, Johnson RE, Unk I, Prakash S, Prakash L. Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol Cell Biol 2005; 25:9734 - 40; http://dx.doi.org/10.1128/MCB.25.21.9734-9740.2005; PMID: 16227619
  • D’Souza S, Walker GC. Novel role for the C terminus of Saccharomyces cerevisiae Rev1 in mediating protein-protein interactions. Mol Cell Biol 2006; 26:8173 - 82; http://dx.doi.org/10.1128/MCB.00202-06; PMID: 16923957
  • Kosarek JN, Woodruff RV, Rivera-Begeman A, Guo C, D’Souza S, Koonin EV, et al. Comparative analysis of in vivo interactions between Rev1 protein and other Y-family DNA polymerases in animals and yeasts. DNA Repair (Amst) 2008; 7:439 - 51; http://dx.doi.org/10.1016/j.dnarep.2007.11.016; PMID: 18242152
  • Sharma S, Hicks JK, Chute CL, Brennan JR, Ahn JY, Glover TW, et al. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res 2012; 40:682 - 91; http://dx.doi.org/10.1093/nar/gkr769; PMID: 21926160
  • Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, et al. Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase ζ and REV1. J Biol Chem 2010; 285:12299 - 307; http://dx.doi.org/10.1074/jbc.M109.092403; PMID: 20164194
  • Gan GN, Wittschieben JP, Wittschieben BO, Wood RD. DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 2008; 18:174 - 83; http://dx.doi.org/10.1038/cr.2007.117; PMID: 18157155
  • Nelson JR, Lawrence CW, Hinkle DC. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 1996; 272:1646 - 9; http://dx.doi.org/10.1126/science.272.5268.1646; PMID: 8658138
  • Takeuchi R, Oshige M, Uchida M, Ishikawa G, Takata K, Shimanouchi K, et al. Purification of Drosophila DNA polymerase ζ by REV1 protein-affinity chromatography. Biochem J 2004; 382:535 - 43; http://dx.doi.org/10.1042/BJ20031833; PMID: 15175013
  • Cheung HW, Chun AC, Wang Q, Deng W, Hu L, Guan XY, et al. Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNA-damaging agents. Cancer Res 2006; 66:4357 - 67; http://dx.doi.org/10.1158/0008-5472.CAN-05-3602; PMID: 16618761
  • Okada T, Sonoda E, Yoshimura M, Kawano Y, Saya H, Kohzaki M, et al. Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol Cell Biol 2005; 25:6103 - 11; http://dx.doi.org/10.1128/MCB.25.14.6103-6111.2005; PMID: 15988022
  • McNally K, Neal JA, McManus TP, McCormick JJ, Maher VM. hRev7, putative subunit of hPolzeta, plays a critical role in survival, induction of mutations, and progression through S-phase, of UV((254nm))-irradiated human fibroblasts. DNA Repair (Amst) 2008; 7:597 - 604; http://dx.doi.org/10.1016/j.dnarep.2007.12.013; PMID: 18295554
  • Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C. Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 1999; 58:181 - 7; http://dx.doi.org/10.1006/geno.1999.5831; PMID: 10366450
  • Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, et al. A human REV7 homolog that interacts with the polymerase ζ catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem 2000; 275:4391 - 7; http://dx.doi.org/10.1074/jbc.275.6.4391; PMID: 10660610
  • Chen J, Fang G. MAD2B is an inhibitor of the anaphase-promoting complex. Genes Dev 2001; 15:1765 - 70; http://dx.doi.org/10.1101/gad.898701; PMID: 11459826
  • Pfleger CM, Salic A, Lee E, Kirschner MW. Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1. Genes Dev 2001; 15:1759 - 64; http://dx.doi.org/10.1101/gad.897901; PMID: 11459825
  • Eytan E, Moshe Y, Braunstein I, Hershko A. Roles of the anaphase-promoting complex/cyclosome and of its activator Cdc20 in functional substrate binding. Proc Natl Acad Sci USA 2006; 103:2081 - 6; http://dx.doi.org/10.1073/pnas.0510695103; PMID: 16455800
  • Yu H. Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell 2007; 27:3 - 16; http://dx.doi.org/10.1016/j.molcel.2007.06.009; PMID: 17612486
  • Qiao X, Zhang L, Gamper AM, Fujita T, Wan Y. APC/C-Cdh1: from cell cycle to cellular differentiation and genomic integrity. Cell Cycle 2010; 9:3904 - 12; http://dx.doi.org/10.4161/cc.9.19.13585; PMID: 20935501
  • Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349:132 - 8; http://dx.doi.org/10.1038/349132a0; PMID: 1846030
  • Pfleger CM, Kirschner MW. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 2000; 14:655 - 65; PMID: 10733526
  • Wang Y, Zhan Q. Cell cycle-dependent expression of centrosomal ninein-like protein in human cells is regulated by the anaphase-promoting complex. J Biol Chem 2007; 282:17712 - 9; http://dx.doi.org/10.1074/jbc.M701350200; PMID: 17403670
  • Park HJ, Costa RH, Lau LF, Tyner AL, Raychaudhuri P. Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase. Mol Cell Biol 2008; 28:5162 - 71; http://dx.doi.org/10.1128/MCB.00387-08; PMID: 18573889
  • Littlepage LE, Ruderman JV. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev 2002; 16:2274 - 85; http://dx.doi.org/10.1101/gad.1007302; PMID: 12208850
  • Reis A, Levasseur M, Chang HY, Elliott DJ, Jones KT. The CRY box: a second APCcdh1-dependent degron in mammalian cdc20. EMBO Rep 2006; 7:1040 - 5; http://dx.doi.org/10.1038/sj.embor.7400772; PMID: 16878123
  • Iwai H, Kim M, Yoshikawa Y, Ashida H, Ogawa M, Fujita Y, et al. A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell 2007; 130:611 - 23; http://dx.doi.org/10.1016/j.cell.2007.06.043; PMID: 17719540
  • Ying B, Wold WS. Adenovirus ADP protein (E3-11.6K), which is required for efficient cell lysis and virus release, interacts with human MAD2B. Virology 2003; 313:224 - 34; http://dx.doi.org/10.1016/S0042-6822(03)00287-3; PMID: 12951035
  • Garg P, Burgers PM. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1. Proc Natl Acad Sci USA 2005; 102:18361 - 6; http://dx.doi.org/10.1073/pnas.0505949102; PMID: 16344468
  • Skoneczna A, McIntyre J, Skoneczny M, Policinska Z, Sledziewska-Gojska E. Polymerase η is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiae.. J Mol Biol 2007; 366:1074 - 86; http://dx.doi.org/10.1016/j.jmb.2006.11.093; PMID: 17198712
  • Jung YS, Liu G, Chen X. Pirh2 E3 ubiquitin ligase targets DNA polymerase η for 20S proteasomal degradation. Mol Cell Biol 2010; 30:1041 - 8; http://dx.doi.org/10.1128/MCB.01198-09; PMID: 20008555
  • Jung YS, Qian Y, Chen X. DNA polymerase η is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation. DNA Repair (Amst) 2012; 11:177 - 84; http://dx.doi.org/10.1016/j.dnarep.2011.10.017; PMID: 22056306
  • Wimmer U, Ferrari E, Hunziker P, Hübscher U. Control of DNA polymerase λ stability by phosphorylation and ubiquitination during the cell cycle. EMBO Rep 2008; 9:1027 - 33; http://dx.doi.org/10.1038/embor.2008.148; PMID: 18688254
  • Waters LS, Walker GC. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase. Proc Natl Acad Sci USA 2006; 103:8971 - 6; http://dx.doi.org/10.1073/pnas.0510167103; PMID: 16751278
  • Sabbioneda S, Bortolomai I, Giannattasio M, Plevani P, Muzi-Falconi M. Yeast Rev1 is cell cycle regulated, phosphorylated in response to DNA damage and its binding to chromosomes is dependent upon MEC1. DNA Repair (Amst) 2007; 6:121 - 7; http://dx.doi.org/10.1016/j.dnarep.2006.09.002; PMID: 17035102
  • Pozo FM, Oda T, Sekimoto T, Murakumo Y, Masutani C, Hanaoka F, et al. Molecular chaperone Hsp90 regulates REV1-mediated mutagenesis. Mol Cell Biol 2011; 31:3396 - 409; http://dx.doi.org/10.1128/MCB.05117-11; PMID: 21690293
  • Wiltrout ME, Walker GC. Proteasomal regulation of the mutagenic translesion DNA polymerase, Saccharomyces cerevisiae Rev1. DNA Repair (Amst) 2011; 10:169 - 75; http://dx.doi.org/10.1016/j.dnarep.2010.10.008; PMID: 21227758
  • Guo C, Tang TS, Bienko M, Parker JL, Bielen AB, Sonoda E, et al. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol Cell Biol 2006; 26:8892 - 900; http://dx.doi.org/10.1128/MCB.01118-06; PMID: 16982685
  • D’Souza S, Waters LS, Walker GC. Novel conserved motifs in Rev1 C-terminus are required for mutagenic DNA damage tolerance. DNA Repair (Amst) 2008; 7:1455 - 70; http://dx.doi.org/10.1016/j.dnarep.2008.05.009; PMID: 18603483
  • Chun AC, Jin DY. Ubiquitin-dependent regulation of translesion polymerases. Biochem Soc Trans 2010; 38:110 - 5; http://dx.doi.org/10.1042/BST0380110; PMID: 20074045
  • Wan Y, Liu X, Kirschner MW. The anaphase-promoting complex mediates TGF-β signaling by targeting SnoN for destruction. Mol Cell 2001; 8:1027 - 39; http://dx.doi.org/10.1016/S1097-2765(01)00382-3; PMID: 11741538
  • Gutierrez GJ, Tsuji T, Chen M, Jiang W, Ronai ZA. Interplay between Cdh1 and JNK activity during the cell cycle. Nat Cell Biol 2010; 12:686 - 95; http://dx.doi.org/10.1038/ncb2071; PMID: 20581839
  • Horn SR, Thomenius MJ, Johnson ES, Freel CD, Wu JQ, Coloff JL, et al. Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol Biol Cell 2011; 22:1207 - 16; http://dx.doi.org/10.1091/mbc.E10-07-0567; PMID: 21325626
  • Zhang L, Park CH, Wu J, Kim H, Liu W, Fujita T, et al. Proteolysis of Rad17 by Cdh1/APC regulates checkpoint termination and recovery from genotoxic stress. EMBO J 2010; 29:1726 - 37; http://dx.doi.org/10.1038/emboj.2010.55; PMID: 20424596
  • Cui Y, Cheng X, Zhang C, Zhang Y, Li S, Wang C, et al. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases. J Biol Chem 2010; 285:32988 - 98; http://dx.doi.org/10.1074/jbc.M110.140905; PMID: 20729194
  • Izawa D, Pines J. How APC/C-Cdc20 changes its substrate specificity in mitosis. Nat Cell Biol 2011; 13:223 - 33; http://dx.doi.org/10.1038/ncb2165; PMID: 21336306
  • Cotto-Rios XM, Jones MJ, Busino L, Pagano M, Huang TT. APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage. J Cell Biol 2011; 194:177 - 86; http://dx.doi.org/10.1083/jcb.201101062; PMID: 21768287
  • Castro A, Vigneron S, Bernis C, Labbé JC, Lorca T. Xkid is degraded in a D-box, KEN-box, and A-box-independent pathway. Mol Cell Biol 2003; 23:4126 - 38; http://dx.doi.org/10.1128/MCB.23.12.4126-4138.2003; PMID: 12773557
  • Araki M, Yu H, Asano M. A novel motif governs APC-dependent degradation of Drosophila ORC1 in vivo.. Genes Dev 2005; 19:2458 - 65; http://dx.doi.org/10.1101/gad.1361905; PMID: 16195415
  • Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008; 133:653 - 65; http://dx.doi.org/10.1016/j.cell.2008.04.012; PMID: 18485873
  • Kraft C, Vodermaier HC, Maurer-Stroh S, Eisenhaber F, Peters JM. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell 2005; 18:543 - 53; http://dx.doi.org/10.1016/j.molcel.2005.04.023; PMID: 15916961
  • Chow C, Wong N, Pagano M, Lun SW, Nakayama KI, Nakayama K, et al. Regulation of APC/CCdc20 activity by RASSF1A-APC/CCdc20 circuitry. Oncogene 2012; 31:1975 - 87; http://dx.doi.org/10.1038/onc.2011.372; PMID: 21874044
  • Masuda Y, Ohmae M, Masuda K, Kamiya K. Structure and enzymatic properties of a stable complex of the human REV1 and REV7 proteins. J Biol Chem 2003; 278:12356 - 60; http://dx.doi.org/10.1074/jbc.M211765200; PMID: 12529368
  • Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, et al. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem 2001; 276:35644 - 51; http://dx.doi.org/10.1074/jbc.M102051200; PMID: 11485998
  • Hashimoto K, Cho Y, Yang IY, Akagi J, Ohashi E, Tateishi S, et al. The vital role of polymerase ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[a]pyrene-dG and recruitment of polymerase ζ by REV1 to replication-stalled site. J Biol Chem 2012; 287:9613 - 22; http://dx.doi.org/10.1074/jbc.M111.331728; PMID: 22303021
  • Lawrence CW, Das G, Christensen RB. REV7, a new gene concerned with UV mutagenesis in yeast. Mol Gen Genet 1985; 200:80 - 5; http://dx.doi.org/10.1007/BF00383316; PMID: 3897794
  • Rajpal DK, Wu X, Wang Z. Alteration of ultraviolet-induced mutagenesis in yeast through molecular modulation of the REV3 and REV7 gene expression. Mutat Res 2000; 461:133 - 43; http://dx.doi.org/10.1016/S0921-8777(00)00047-1; PMID: 11018586
  • Treier M, Staszewski LM, Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain. Cell 1994; 78:787 - 98; http://dx.doi.org/10.1016/S0092-8674(94)90502-9; PMID: 8087846
  • Zhou Y, Ching YP, Chun AC, Jin DY. Nuclear localization of the cell cycle regulator CDH1 and its regulation by phosphorylation. J Biol Chem 2003; 278:12530 - 6; http://dx.doi.org/10.1074/jbc.M212853200; PMID: 12560341
  • Turner DL, Weintraub H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 1994; 8:1434 - 47; http://dx.doi.org/10.1101/gad.8.12.1434; PMID: 7926743
  • Chan CP, Mak TY, Chin KT, Ng IOL, Jin DY. N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J Cell Sci 2010; 123:1438 - 48; http://dx.doi.org/10.1242/jcs.067819; PMID: 20356926
  • Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 1986; 234:179 - 86; http://dx.doi.org/10.1126/science.3018930; PMID: 3018930

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.