823
Views
11
CrossRef citations to date
0
Altmetric
Report

Regulatory motifs in Chk1

&
Pages 916-922 | Published online: 19 Feb 2013

References

  • O’Connell MJ, Walworth NC, Carr AM. The G2-phase DNA-damage checkpoint. Trends Cell Biol 2000; 10:296 - 303; http://dx.doi.org/10.1016/S0962-8924(00)01773-6; PMID: 10856933
  • O’Connell MJ, Cimprich KA. G2 damage checkpoints: what is the turn-on?. J Cell Sci 2005; 118:1 - 6; http://dx.doi.org/10.1242/jcs.01626; PMID: 15615778
  • Capasso H, Palermo C, Wan S, Rao H, John UP, O’Connell MJ, et al. Phosphorylation activates Chk1 and is required for checkpoint-mediated cell cycle arrest. J Cell Sci 2002; 115:4555 - 64; http://dx.doi.org/10.1242/jcs.00133; PMID: 12415000
  • Mochida S, Esashi F, Aono N, Tamai K, O’Connell MJ, Yanagida M. Regulation of checkpoint kinases through dynamic interaction with Crb2. EMBO J 2004; 23:418 - 28; http://dx.doi.org/10.1038/sj.emboj.7600018; PMID: 14739927
  • Raleigh JM, O’Connell MJ. The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci 2000; 113:1727 - 36; PMID: 10769204
  • Sørensen CS, Syljuåsen RG. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res 2012; 40:477 - 86; http://dx.doi.org/10.1093/nar/gkr697; PMID: 21937510
  • den Elzen NR, O’Connell MJ. Recovery from DNA damage checkpoint arrest by PP1-mediated inhibition of Chk1. EMBO J 2004; 23:908 - 18; http://dx.doi.org/10.1038/sj.emboj.7600105; PMID: 14765108
  • Tapia-Alveal C, Calonge TM, O’Connell MJ. Regulation of chk1. Cell Div 2009; 4:8; http://dx.doi.org/10.1186/1747-1028-4-8; PMID: 19400965
  • Chen P, Luo C, Deng Y, Ryan K, Register J, Margosiak S, et al. The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Cell 2000; 100:681 - 92; http://dx.doi.org/10.1016/S0092-8674(00)80704-7; PMID: 10761933
  • Katsuragi Y, Sagata N. Regulation of Chk1 kinase by autoinhibition and ATR-mediated phosphorylation. Mol Biol Cell 2004; 15:1680 - 9; http://dx.doi.org/10.1091/mbc.E03-12-0874; PMID: 14767054
  • Wang SX, Dunphy WG. Activation of Xenopus Chk1 by mutagenesis of threonine-377. FEBS Lett 2000; 487:277 - 81; http://dx.doi.org/10.1016/S0014-5793(00)02370-X; PMID: 11150524
  • Pereira E, Chen Y, Sanchez Y. Conserved ATRMec1 phosphorylation-independent activation of Chk1 by single amino acid substitution in the GD domain. Cell Cycle 2009; 8:1788 - 93; http://dx.doi.org/10.4161/cc.8.11.8737; PMID: 19411848
  • Kosoy A, O’Connell MJ. Regulation of Chk1 by its C-terminal domain. Mol Biol Cell 2008; 19:4546 - 53; http://dx.doi.org/10.1091/mbc.E08-04-0444; PMID: 18716058
  • Chen Y, Caldwell JM, Pereira E, Baker RW, Sanchez Y. ATRMec1 phosphorylation-independent activation of Chk1 in vivo. J Biol Chem 2009; 284:182 - 90; http://dx.doi.org/10.1074/jbc.M806530200; PMID: 18984588
  • Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 2006; 209:13 - 20; http://dx.doi.org/10.1002/jcp.20689; PMID: 16741928
  • Koniaras K, Cuddihy AR, Christopoulos H, Hogg A, O’Connell MJ. Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 2001; 20:7453 - 63; http://dx.doi.org/10.1038/sj.onc.1204942; PMID: 11709716
  • Kuntz K, O’Connell MJ. The G(2) DNA damage checkpoint: could this ancient regulator be the Achilles heel of cancer?. Cancer Biol Ther 2009; 8:1433 - 9; http://dx.doi.org/10.4161/cbt.8.15.9081; PMID: 19574738
  • Dent P, Tang Y, Yacoub A, Dai Y, Fisher PB, Grant S. CHK1 inhibitors in combination chemotherapy: thinking beyond the cell cycle. Mol Interv 2011; 11:133 - 40; http://dx.doi.org/10.1124/mi.11.2.11; PMID: 21540473
  • Garrett MD, Collins I. Anticancer therapy with checkpoint inhibitors: what, where and when?. Trends Pharmacol Sci 2011; 32:308 - 16; http://dx.doi.org/10.1016/j.tips.2011.02.014; PMID: 21458083
  • Saka Y, Esashi F, Matsusaka T, Mochida S, Yanagida M. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev 1997; 11:3387 - 400; http://dx.doi.org/10.1101/gad.11.24.3387; PMID: 9407031
  • Wang B, Matsuoka S, Carpenter PB, Elledge SJ. 53BP1, a mediator of the DNA damage checkpoint. Science 2002; 298:1435 - 8; http://dx.doi.org/10.1126/science.1076182; PMID: 12364621
  • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003; 421:961 - 6; http://dx.doi.org/10.1038/nature01446; PMID: 12607005
  • Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003; 421:952 - 6; http://dx.doi.org/10.1038/nature01445; PMID: 12607003
  • Lou Z, Minter-Dykhouse K, Wu X, Chen J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 2003; 421:957 - 61; http://dx.doi.org/10.1038/nature01447; PMID: 12607004
  • Chini CC, Chen J. Human claspin is required for replication checkpoint control. J Biol Chem 2003; 278:30057 - 62; http://dx.doi.org/10.1074/jbc.M301136200; PMID: 12766152
  • Kumagai A, Dunphy WG. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 2000; 6:839 - 49; http://dx.doi.org/10.1016/S1097-2765(05)00092-4; PMID: 11090622
  • Lee J, Kumagai A, Dunphy WG. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol Cell 2003; 11:329 - 40; http://dx.doi.org/10.1016/S1097-2765(03)00045-5; PMID: 12620222
  • Kai M, Wang TS. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis. Mutat Res 2003; 532:59 - 73; http://dx.doi.org/10.1016/j.mrfmmm.2003.08.010; PMID: 14643429
  • Dahlen M, Olsson T, Kanter-Smoler G, Ramne A, Sunnerhagen P. Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe. Mol Biol Cell 1998; 9:611 - 21; PMID: 9487130
  • Lindsay HD, Griffiths DJF, Edwards RJ, Christensen PU, Murray JM, Osman F, et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev 1998; 12:382 - 95; http://dx.doi.org/10.1101/gad.12.3.382; PMID: 9450932
  • Ohta M, Guo Y, Halfter U, Zhu JK. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 2003; 100:11771 - 6; http://dx.doi.org/10.1073/pnas.2034853100; PMID: 14504388
  • Tochio N, Koshiba S, Kobayashi N, Inoue M, Yabuki T, Aoki M, et al. Solution structure of the kinase-associated domain 1 of mouse microtubule-associated protein/microtubule affinity-regulating kinase 3. Protein Sci 2006; 15:2534 - 43; http://dx.doi.org/10.1110/ps.062391106; PMID: 17075132
  • Moravcevic K, Mendrola JM, Schmitz KR, Wang YH, Slochower D, Janmey PA, et al. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell 2010; 143:966 - 77; http://dx.doi.org/10.1016/j.cell.2010.11.028; PMID: 21145462
  • Beullens M, Vancauwenbergh S, Morrice N, Derua R, Ceulemans H, Waelkens E, et al. Substrate specificity and activity regulation of protein kinase MELK. J Biol Chem 2005; 280:40003 - 11; http://dx.doi.org/10.1074/jbc.M507274200; PMID: 16216881
  • Elbert M, Rossi G, Brennwald P. The yeast par-1 homologs kin1 and kin2 show genetic and physical interactions with components of the exocytic machinery. Mol Biol Cell 2005; 16:532 - 49; http://dx.doi.org/10.1091/mbc.E04-07-0549; PMID: 15563607
  • Akaboshi M, Hashimoto H, Ishida H, Saijo S, Koizumi N, Sato M, et al. The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14. J Mol Biol 2008; 377:246 - 57; http://dx.doi.org/10.1016/j.jmb.2008.01.006; PMID: 18237745
  • den Elzen N, Kosoy A, Christopoulos H, O’Connell MJ. Resisting arrest: recovery from checkpoint arrest through dephosphorylation of Chk1 by PP1. Cell Cycle 2004; 3:529 - 33; PMID: 15020842
  • Calonge TM, O’Connell MJ. Turning off the G2 DNA damage checkpoint. DNA Repair (Amst) 2008; 7:136 - 40; http://dx.doi.org/10.1016/j.dnarep.2007.07.017; PMID: 17851138
  • Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300:1542 - 8; http://dx.doi.org/10.1126/science.1083430; PMID: 12791985
  • Saka Y, Esashi F, Matsusaka T, Mochida S, Yanagida M. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev 1997; 11:3387 - 400; http://dx.doi.org/10.1101/gad.11.24.3387; PMID: 9407031
  • Maundrell K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 1993; 123:127 - 30; http://dx.doi.org/10.1016/0378-1119(93)90551-D; PMID: 8422996
  • Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, et al. DisProt: the Database of Disordered Proteins. Nucleic Acids Res 2007; 35:Database issue D786 - 93; http://dx.doi.org/10.1093/nar/gkl893; PMID: 17145717
  • Buchan DW, Ward SM, Lobley AE, Nugent TC, Bryson K, Jones DT. Protein annotation and modelling servers at University College London. Nucleic Acids Res 2010; 38:Web Server issue W563 - 8; http://dx.doi.org/10.1093/nar/gkq427; PMID: 20507913
  • Calonge TM, Eshaghi M, Liu J, Ronai Z, O’Connell MJ. Transformation/transcription domain-associated protein (TRRAP)-mediated regulation of Wee1. Genetics 2010; 185:81 - 93; http://dx.doi.org/10.1534/genetics.110.114769; PMID: 20194963
  • Calonge TM, O’Connell MJ. Antagonism of Chk1 signaling in the G2 DNA damage checkpoint by dominant alleles of Cdr1. Genetics 2006; 174:113 - 23; http://dx.doi.org/10.1534/genetics.106.060970; PMID: 16816416
  • Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 1987; 154:367 - 82; http://dx.doi.org/10.1016/0076-6879(87)54085-X; PMID: 3323813
  • Tapia-Alveal C, O’Connell MJ. Methods for studying checkpoint kinases - Chk1. Methods Mol Biol 2011; 782:171 - 9; http://dx.doi.org/10.1007/978-1-61779-273-1_12; PMID: 21870291

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.