1,551
Views
34
CrossRef citations to date
0
Altmetric
Perspective

Pirh2

An E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation

, &
Pages 2733-2737 | Received 21 Jun 2013, Accepted 16 Jul 2013, Published online: 05 Aug 2013

References

  • Beitel LK, Elhaji YA, Lumbroso R, Wing SS, Panet-Raymond V, Gottlieb B, Pinsky L, Trifiro MA. Cloning and characterization of an androgen receptor N-terminal-interacting protein with ubiquitin-protein ligase activity. J Mol Endocrinol 2002; 29:41 - 60; http://dx.doi.org/10.1677/jme.0.0290041; PMID: 12200228
  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112:779 - 91; http://dx.doi.org/10.1016/S0092-8674(03)00193-4; PMID: 12654245
  • Jung YS, Qian Y, Chen X. Pirh2 RING-finger E3 ubiquitin ligase: its role in tumorigenesis and cancer therapy. FEBS Lett 2012; 586:1397 - 402; http://dx.doi.org/10.1016/j.febslet.2012.03.052; PMID: 22673504
  • Jung YS, Qian Y, Yan W, Chen X. Pirh2 E3 ubiquitin ligase modulates keratinocyte differentiation through p63. J Invest Dermatol 2013; 133:1178 - 87; http://dx.doi.org/10.1038/jid.2012.466; PMID: 23235527
  • Yan W, Chen X, Zhang Y, Zhang J, Jung YS, Chen X. Arsenic suppresses cell survival via Pirh2-mediated proteasomal degradation of ΔNp63 protein. J Biol Chem 2013; 288:2907 - 13; http://dx.doi.org/10.1074/jbc.M112.428607; PMID: 23271742
  • Hakem A, Bohgaki M, Lemmers B, Tai E, Salmena L, Matysiak-Zablocki E, Jung YS, Karaskova J, Kaustov L, Duan S, et al. Role of Pirh2 in mediating the regulation of p53 and c-Myc. PLoS Genet 2011; 7:e1002360; http://dx.doi.org/10.1371/journal.pgen.1002360; PMID: 22125490
  • Bohgaki M, Hakem A, Halaby MJ, Bohgaki T, Li Q, Bissey PA, Shloush J, Kislinger T, Sanchez O, Sheng Y, et al. The E3 ligase PIRH2 polyubiquitylates CHK2 and regulates its turnover. Cell Death Differ 2013; 20:812 - 22; http://dx.doi.org/10.1038/cdd.2013.7; PMID: 23449389
  • Zilfou JT, Lowe SW. Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 2009; 1:a001883; http://dx.doi.org/10.1101/cshperspect.a001883; PMID: 20066118
  • Bell HS, Ryan KM. Targeting the p53 family for cancer therapy: ‘big brother’ joins the fight. Cell Cycle 2007; 6:1995 - 2000; http://dx.doi.org/10.4161/cc.6.16.4614; PMID: 17721076
  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 2007; 26:923 - 34; http://dx.doi.org/10.1038/sj.emboj.7601560; PMID: 17268548
  • Brooks CL, Gu W. p53 regulation by ubiquitin. FEBS Lett 2011; 585:2803 - 9; http://dx.doi.org/10.1016/j.febslet.2011.05.022; PMID: 21624367
  • Sheng Y, Laister RC, Lemak A, Wu B, Tai E, Duan S, Lukin J, Sunnerhagen M, Srisailam S, Karra M, et al. Molecular basis of Pirh2-mediated p53 ubiquitylation. Nat Struct Mol Biol 2008; 15:1334 - 42; http://dx.doi.org/10.1038/nsmb.1521; PMID: 19043414
  • Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci 2000; 113:1661 - 70; PMID: 10769197
  • Amelio I, Grespi F, Annicchiarico-Petruzzelli M, Melino G. p63 the guardian of human reproduction. Cell Cycle 2012; 11:4545 - 51; http://dx.doi.org/10.4161/cc.22819; PMID: 23165243
  • Zawacka-Pankau J, Kostecka A, Sznarkowska A, Hedström E, Kawiak A. p73 tumor suppressor protein: a close relative of p53 not only in structure but also in anti-cancer approach?. Cell Cycle 2010; 9:720 - 8; http://dx.doi.org/10.4161/cc.9.4.10668; PMID: 20160513
  • Allocati N, Di Ilio C, De Laurenzi V. p63/p73 in the control of cell cycle and cell death. Exp Cell Res 2012; 318:1285 - 90; http://dx.doi.org/10.1016/j.yexcr.2012.01.023; PMID: 22326462
  • McKeon F, Melino G. Fog of war: the emerging p53 family. Cell Cycle 2007; 6:229 - 32; http://dx.doi.org/10.4161/cc.6.3.3876; PMID: 17297295
  • Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000; 404:99 - 103; http://dx.doi.org/10.1038/35003607; PMID: 10716451
  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F, Jacks T. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 2005; 7:363 - 73; http://dx.doi.org/10.1016/j.ccr.2005.02.019; PMID: 15837625
  • Garcia V, Silva J, Dominguez G, García JM, Peña C, Rodriguez R, Provencio M, España P, Bonilla F. Overexpression of p16INK4a correlates with high expression of p73 in breast carcinomas. Mutat Res 2004; 554:215 - 21; http://dx.doi.org/10.1016/j.mrfmmm.2004.04.008; PMID: 15450420
  • Tomasini R, Mak TW, Melino G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol 2008; 18:244 - 52; http://dx.doi.org/10.1016/j.tcb.2008.03.003; PMID: 18406616
  • Lee H, Kimelman D. A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev Cell 2002; 2:607 - 16; http://dx.doi.org/10.1016/S1534-5807(02)00166-1; PMID: 12015968
  • Peschiaroli A, Scialpi F, Bernassola F, Pagano M, Melino G. The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73. Oncogene 2009; 28:3157 - 66; http://dx.doi.org/10.1038/onc.2009.177; PMID: 19581926
  • Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH, Cesareni G, Melino G. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 2005; 24:836 - 48; http://dx.doi.org/10.1038/sj.emboj.7600444; PMID: 15678106
  • Jung YS, Qian Y, Chen X. The p73 tumor suppressor is targeted by Pirh2 RING finger E3 ubiquitin ligase for the proteasome-dependent degradation. J Biol Chem 2011; 286:35388 - 95; http://dx.doi.org/10.1074/jbc.M111.261537; PMID: 21852228
  • Wu H, Zeinab RA, Flores ER, Leng RP. Pirh2, a ubiquitin E3 ligase, inhibits p73 transcriptional activity by promoting its ubiquitination. Mol Cancer Res 2011; 9:1780 - 90; http://dx.doi.org/10.1158/1541-7786.MCR-11-0157; PMID: 21994467
  • Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8:253 - 67; http://dx.doi.org/10.1038/nrc2347; PMID: 18354415
  • Lu Z, Hunter T. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle 2010; 9:2342 - 52; http://dx.doi.org/10.4161/cc.9.12.11988; PMID: 20519948
  • Hattori T, Isobe T, Abe K, Kikuchi H, Kitagawa K, Oda T, Uchida C, Kitagawa M. Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. Cancer Res 2007; 67:10789 - 95; http://dx.doi.org/10.1158/0008-5472.CAN-07-2033; PMID: 18006823
  • Duan W, Gao L, Druhan LJ, Zhu WG, Morrison C, Otterson GA, Villalona-Calero MA. Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J Natl Cancer Inst 2004; 96:1718 - 21; http://dx.doi.org/10.1093/jnci/djh292; PMID: 15547185
  • Logan IR, Gaughan L, McCracken SR, Sapountzi V, Leung HY, Robson CN. Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol Cell Biol 2006; 26:6502 - 10; http://dx.doi.org/10.1128/MCB.00147-06; PMID: 16914734
  • Jung YS, Hakem A, Hakem R, Chen X. Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase eta to suppress translesion DNA synthesis. Mol Cell Biol 2011; 31:3997 - 4006; http://dx.doi.org/10.1128/MCB.05808-11; PMID: 21791603
  • Antoni L, Sodha N, Collins I, Garrett MD. CHK2 kinase: cancer susceptibility and cancer therapy - two sides of the same coin?. Nat Rev Cancer 2007; 7:925 - 36; http://dx.doi.org/10.1038/nrc2251; PMID: 18004398
  • Lee SB, Kim SH, Bell DW, Wahrer DC, Schiripo TA, Jorczak MM, Sgroi DC, Garber JE, Li FP, Nichols KE, et al. Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni Syndrome. Cancer Res 2001; 61:8062 - 7; PMID: 11719428
  • Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998; 282:1893 - 7; http://dx.doi.org/10.1126/science.282.5395.1893; PMID: 9836640
  • Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008; 9:759 - 69; http://dx.doi.org/10.1038/nrm2514; PMID: 18813293
  • Kass EM, Ahn J, Tanaka T, Freed-Pastor WA, Keezer S, Prives C. Stability of checkpoint kinase 2 is regulated via phosphorylation at serine 456. J Biol Chem 2007; 282:30311 - 21; http://dx.doi.org/10.1074/jbc.M704642200; PMID: 17715138
  • Kass EM, Poyurovsky MV, Zhu Y, Prives C. Mdm2 and PCAF increase Chk2 ubiquitination and degradation independently of their intrinsic E3 ligase activities. Cell Cycle 2009; 8:430 - 7; http://dx.doi.org/10.4161/cc.8.3.7624; PMID: 19176998
  • Lovly CM, Yan L, Ryan CE, Takada S, Piwnica-Worms H. Regulation of Chk2 ubiquitination and signaling through autophosphorylation of serine 379. Mol Cell Biol 2008; 28:5874 - 85; http://dx.doi.org/10.1128/MCB.00821-08; PMID: 18644861
  • Zhang D, Zaugg K, Mak TW, Elledge SJ. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 2006; 126:529 - 42; http://dx.doi.org/10.1016/j.cell.2006.06.039; PMID: 16901786

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.