1,272
Views
30
CrossRef citations to date
0
Altmetric
Report

Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle

, , , , , & show all
Pages 3354-3363 | Received 12 Aug 2013, Accepted 16 Aug 2013, Published online: 27 Aug 2013

References

  • Hay RT. SUMO: a history of modification. Mol Cell 2005; 18:1 - 12; http://dx.doi.org/10.1016/j.molcel.2005.03.012; PMID: 15808504
  • Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 2010; 428:133 - 45; http://dx.doi.org/10.1042/BJ20100158; PMID: 20462400
  • Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010; 11:861 - 71; http://dx.doi.org/10.1038/nrm3011; PMID: 21102611
  • Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 2013; 82:357 - 85; http://dx.doi.org/10.1146/annurev-biochem-061909-093311; PMID: 23746258
  • Hochstrasser M. SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 2001; 107:5 - 8; http://dx.doi.org/10.1016/S0092-8674(01)00519-0; PMID: 11595179
  • Pichler A, Gast A, Seeler JS, Dejean A, Melchior F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 2002; 108:109 - 20; http://dx.doi.org/10.1016/S0092-8674(01)00633-X; PMID: 11792325
  • Kagey MH, Melhuish TA, Wotton D. The polycomb protein Pc2 is a SUMO E3. Cell 2003; 113:127 - 37; http://dx.doi.org/10.1016/S0092-8674(03)00159-4; PMID: 12679040
  • Kahyo T, Nishida T, Yasuda H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 2001; 8:713 - 8; http://dx.doi.org/10.1016/S1097-2765(01)00349-5; PMID: 11583632
  • Weger S, Hammer E, Heilbronn R. Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 2005; 579:5007 - 12; http://dx.doi.org/10.1016/j.febslet.2005.07.088; PMID: 16122737
  • Hay RT. SUMO-specific proteases: a twist in the tail. Trends Cell Biol 2007; 17:370 - 6; http://dx.doi.org/10.1016/j.tcb.2007.08.002; PMID: 17768054
  • Cubeñas-Potts C, Matunis MJ. SUMO: a multifaceted modifier of chromatin structure and function. Dev Cell 2013; 24:1 - 12; http://dx.doi.org/10.1016/j.devcel.2012.11.020; PMID: 23328396
  • Kadaré G, Toutant M, Formstecher E, Corvol JC, Carnaud M, Boutterin MC, Girault JA. PIAS1-mediated sumoylation of focal adhesion kinase activates its autophosphorylation. J Biol Chem 2003; 278:47434 - 40; http://dx.doi.org/10.1074/jbc.M308562200; PMID: 14500712
  • Kang JS, Saunier EF, Akhurst RJ, Derynck R. The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 2008; 10:654 - 64; http://dx.doi.org/10.1038/ncb1728; PMID: 18469808
  • Kubota Y, O’Grady P, Saito H, Takekawa M. Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol 2011; 13:282 - 91; http://dx.doi.org/10.1038/ncb2169; PMID: 21336309
  • Matheny RW Jr., Adamo ML. Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med (Maywood) 2009; 234:1264 - 70; http://dx.doi.org/10.3181/0904-MR-138; PMID: 19596822
  • Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24:7455 - 64; http://dx.doi.org/10.1038/sj.onc.1209085; PMID: 16288292
  • Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 2005; 94:29 - 86; http://dx.doi.org/10.1016/S0065-230X(05)94002-5; PMID: 16095999
  • Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal 2011; 23:1515 - 27; http://dx.doi.org/10.1016/j.cellsig.2011.05.004; PMID: 21620960
  • Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007; 129:1261 - 74; http://dx.doi.org/10.1016/j.cell.2007.06.009; PMID: 17604717
  • Santi SA, Lee H. The Akt isoforms are present at distinct subcellular locations. Am J Physiol Cell Physiol 2010; 298:C580 - 91; http://dx.doi.org/10.1152/ajpcell.00375.2009; PMID: 20018949
  • Chen R, Kim O, Yang J, Sato K, Eisenmann KM, McCarthy J, Chen H, Qiu Y. Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem 2001; 276:31858 - 62; http://dx.doi.org/10.1074/jbc.C100271200; PMID: 11445557
  • Conus NM, Hannan KM, Cristiano BE, Hemmings BA, Pearson RB. Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase. J Biol Chem 2002; 277:38021 - 8; http://dx.doi.org/10.1074/jbc.M203387200; PMID: 12149249
  • Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008; 27:1932 - 43; http://dx.doi.org/10.1038/emboj.2008.120; PMID: 18566586
  • Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W, Lopez AS, Koomen J, Engelman RW, Rivera C, et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS One 2010; 5:e9646; http://dx.doi.org/10.1371/journal.pone.0009646; PMID: 20333297
  • Hart JR, Vogt PK. Phosphorylation of AKT: a mutational analysis. Oncotarget 2011; 2:467 - 76; PMID: 21670491
  • Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M, Gupta MP. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal 2011; 4:ra46; http://dx.doi.org/10.1126/scisignal.2001465; PMID: 21775285
  • Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, et al. The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell 2009; 17:800 - 10; http://dx.doi.org/10.1016/j.devcel.2009.09.007; PMID: 20059950
  • Bae S, Kim SY, Jung JH, Yoon Y, Cha HJ, Lee H, Kim K, Kim J, An IS, Kim J, et al. Akt is negatively regulated by the MULAN E3 ligase. Cell Res 2012; 22:873 - 85; http://dx.doi.org/10.1038/cr.2012.38; PMID: 22410793
  • Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, Hur L, Grabiner BC, Lin X, Darnay BG, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 2009; 325:1134 - 8; http://dx.doi.org/10.1126/science.1175065; PMID: 19713527
  • Yang WL, Wu CY, Wu J, Lin HK. Regulation of Akt signaling activation by ubiquitination. Cell Cycle 2010; 9:487 - 97; http://dx.doi.org/10.4161/cc.9.3.10508; PMID: 20081374
  • Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, Huang HY, Tsai KK, Flores LG, Shao Y, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 2012; 149:1098 - 111; http://dx.doi.org/10.1016/j.cell.2012.02.065; PMID: 22632973
  • Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 2004; 29:233 - 42; http://dx.doi.org/10.1016/j.tibs.2004.03.006; PMID: 15130559
  • Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 2008; 30:203 - 13; http://dx.doi.org/10.1016/j.molcel.2008.02.024; PMID: 18439899
  • Fraser M, Harding SM, Zhao H, Coackley C, Durocher D, Bristow RG. MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks. Cell Cycle 2011; 10:2218 - 32; http://dx.doi.org/10.4161/cc.10.13.16305; PMID: 21623170
  • Lai VK, Ashraf M, Jiang S, Haider K. MicroRNA-143 is a critical regulator of cell cycle activity in stem cells with co-overexpression of Akt and angiopoietin-1 via transcriptional regulation of Erk5/cyclin D1 signaling. Cell Cycle 2012; 11:767 - 77; http://dx.doi.org/10.4161/cc.11.4.19211; PMID: 22374674
  • Blaustein M, Pelisch F, Coso OA, Bissell MJ, Kornblihtt AR, Srebrow A. Mammary epithelial-mesenchymal interaction regulates fibronectin alternative splicing via phosphatidylinositol 3-kinase. J Biol Chem 2004; 279:21029 - 37; http://dx.doi.org/10.1074/jbc.M314260200; PMID: 15028734
  • Blaustein M, Pelisch F, Tanos T, Muñoz MJ, Wengier D, Quadrana L, Sanford JR, Muschietti JP, Kornblihtt AR, Cáceres JF, et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol 2005; 12:1037 - 44; http://dx.doi.org/10.1038/nsmb1020; PMID: 16299516
  • Patel NA, Kaneko S, Apostolatos HS, Bae SS, Watson JE, Davidowitz K, Chappell DS, Birnbaum MJ, Cheng JQ, Cooper DR. Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CbetaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem 2005; 280:14302 - 9; http://dx.doi.org/10.1074/jbc.M411485200; PMID: 15684423
  • Shultz JC, Goehe RW, Wijesinghe DS, Murudkar C, Hawkins AJ, Shay JW, Minna JD, Chalfant CE. Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Res 2010; 70:9185 - 96; http://dx.doi.org/10.1158/0008-5472.CAN-10-1545; PMID: 21045158
  • White ES, Sagana RL, Booth AJ, Yan M, Cornett AM, Bloomheart CA, Tsui JL, Wilke CA, Moore BB, Ritzenthaler JD, et al. Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway. Exp Cell Res 2010; 316:2644 - 53; http://dx.doi.org/10.1016/j.yexcr.2010.06.028; PMID: 20615404
  • Zhou Z, Qiu J, Liu W, Zhou Y, Plocinik RM, Li H, Hu Q, Ghosh G, Adams JA, Rosenfeld MG, et al. The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol Cell 2012; 47:422 - 33; http://dx.doi.org/10.1016/j.molcel.2012.05.014; PMID: 22727668
  • Vu NT, Park MA, Shultz JC, Goehe RW, Hoeferlin LA, Shultz MD, Smith SA, Lynch KW, Chalfant CE. hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. J Biol Chem 2013; 288:8575 - 84; http://dx.doi.org/10.1074/jbc.M112.443333; PMID: 23396972
  • Oliva JL, Zarich N, Martínez N, Jorge R, Castrillo A, Azañedo M, García-Vargas S, Gutiérrez-Eisman S, Juarranz A, Boscá L, et al. The P34G mutation reduces the transforming activity of K-Ras and N-Ras in NIH 3T3 cells but not of H-Ras. J Biol Chem 2004; 279:33480 - 91; http://dx.doi.org/10.1074/jbc.M404058200; PMID: 15181015
  • Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 2007; 448:439 - 44; http://dx.doi.org/10.1038/nature05933; PMID: 17611497
  • Massiello A, Salas A, Pinkerman RL, Roddy P, Roesser JR, Chalfant CE. Identification of two RNA cis-elements that function to regulate the 5′ splice site selection of Bcl-x pre-mRNA in response to ceramide. J Biol Chem 2004; 279:15799 - 804; http://dx.doi.org/10.1074/jbc.M313950200; PMID: 14734550
  • Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 2007; 176:929 - 39; http://dx.doi.org/10.1083/jcb.200701005; PMID: 17371836
  • Shkreta L, Froehlich U, Paquet ER, Toutant J, Elela SA, Chabot B. Anticancer drugs affect the alternative splicing of Bcl-x and other human apoptotic genes. Mol Cancer Ther 2008; 7:1398 - 409; http://dx.doi.org/10.1158/1535-7163.MCT-08-0192; PMID: 18566212
  • Wang Q, Silver PA. Genome-wide RNAi screen discovers functional coupling of alternative splicing and cell cycle control to apoptosis regulation. Cell Cycle 2010; 9:4419 - 21; http://dx.doi.org/10.4161/cc.9.22.14051; PMID: 21088477
  • Chang WH, Liu TC, Yang WK, Lee CC, Lin YH, Chen TY, Chang JG. Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315I mutant cells to imatinib. Cancer Res 2011; 71:383 - 92; http://dx.doi.org/10.1158/0008-5472.CAN-10-1037; PMID: 21224352
  • Shkreta L, Michelle L, Toutant J, Tremblay ML, Chabot B. The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 2011; 286:331 - 40; http://dx.doi.org/10.1074/jbc.M110.162644; PMID: 20980256
  • Apostolatos A, Song S, Acosta S, Peart M, Watson JE, Bickford P, Cooper DR, Patel NA. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J Biol Chem 2012; 287:9299 - 310; http://dx.doi.org/10.1074/jbc.M111.313080; PMID: 22275369
  • Li R, Wei J, Jiang C, Liu D, Deng L, Zhang K, Wang P. Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res 2013; http://dx.doi.org/10.1158/0008-5472.CAN-13-0538; PMID: 23884910
  • Huang J, Yan J, Zhang J, Zhu S, Wang Y, Shi T, Zhu C, Chen C, Liu X, Cheng J, et al. SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat Commun 2012; 3:911; http://dx.doi.org/10.1038/ncomms1919; PMID: 22713753
  • Bassi C, Ho J, Srikumar T, Dowling RJ, Gorrini C, Miller SJ, Mak TW, Neel BG, Raught B, Stambolic V. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 2013; 341:395 - 9; http://dx.doi.org/10.1126/science.1236188; PMID: 23888040
  • González-Santamaría J, Campagna M, Ortega-Molina A, Marcos-Villar L, de la Cruz-Herrera CF, González D, Gallego P, Lopitz-Otsoa F, Esteban M, Rodríguez MS, et al. Regulation of the tumor suppressor PTEN by SUMO. Cell Death Dis 2012; 3:e393; http://dx.doi.org/10.1038/cddis.2012.135; PMID: 23013792
  • Psakhye I, Jentsch S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 2012; 151:807 - 20; http://dx.doi.org/10.1016/j.cell.2012.10.021; PMID: 23122649
  • Hara S, Nakashiro K, Goda H, Hamakawa H. Role of Akt isoforms in HGF-induced invasive growth of human salivary gland cancer cells. Biochem Biophys Res Commun 2008; 370:123 - 8; http://dx.doi.org/10.1016/j.bbrc.2008.03.042; PMID: 18355439
  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001; 20:6877 - 88; http://dx.doi.org/10.1093/emboj/20.23.6877; PMID: 11726523
  • Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 2007; 131:584 - 95; http://dx.doi.org/10.1016/j.cell.2007.08.045; PMID: 17981124
  • Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, Cheng J, Yeh ET. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 2010; 38:191 - 201; http://dx.doi.org/10.1016/j.molcel.2010.03.005; PMID: 20417598
  • Cazalla D, Sanford JR, Cáceres JF. A rapid and efficient protocol to purify biologically active recombinant proteins from mammalian cells. Protein Expr Purif 2005; 42:54 - 8; http://dx.doi.org/10.1016/j.pep.2005.03.035; PMID: 15878828
  • Pelisch F, Gerez J, Druker J, Schor IE, Muñoz MJ, Risso G, Petrillo E, Westman BJ, Lamond AI, Arzt E, et al. The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proc Natl Acad Sci U S A 2010; 107:16119 - 24; http://dx.doi.org/10.1073/pnas.1004653107; PMID: 20805487
  • Tatham MH, Rodriguez MS, Xirodimas DP, Hay RT. Detection of protein SUMOylation in vivo. Nat Protoc 2009; 4:1363 - 71; http://dx.doi.org/10.1038/nprot.2009.128; PMID: 19730420
  • Cramer P, Cáceres JF, Cazalla D, Kadener S, Muro AF, Baralle FE, Kornblihtt AR. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol Cell 1999; 4:251 - 8; http://dx.doi.org/10.1016/S1097-2765(00)80372-X; PMID: 10488340

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.