1,030
Views
30
CrossRef citations to date
0
Altmetric
Report

Cdc14 targets the Holliday junction resolvase Yen1 to the nucleus in early anaphase

, , &
Pages 1392-1399 | Received 17 Jan 2014, Accepted 26 Feb 2014, Published online: 05 Mar 2014

References

  • Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349 - 404; PMID: 10357855
  • Heyer W-D, Ehmsen KT, Liu J. Regulation of homologous recombination in eukaryotes. Annu Rev Genet 2010; 44:113 - 39; http://dx.doi.org/10.1146/annurev-genet-051710-150955; PMID: 20690856
  • Rass U. Resolving branched DNA intermediates with structure-specific nucleases during replication in eukaryotes. Chromosoma 2013; 122:499 - 515; http://dx.doi.org/10.1007/s00412-013-0431-z; PMID: 24008669
  • Schwacha A, Kleckner N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 1995; 83:783 - 91; http://dx.doi.org/10.1016/0092-8674(95)90191-4; PMID: 8521495
  • Bzymek M, Thayer NH, Oh SD, Kleckner N, Hunter N. Double Holliday junctions are intermediates of DNA break repair. Nature 2010; 464:937 - 41; http://dx.doi.org/10.1038/nature08868; PMID: 20348905
  • Schwartz EK, Heyer W-D. Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma 2011; 120:109 - 27; http://dx.doi.org/10.1007/s00412-010-0304-7; PMID: 21369956
  • Hickson ID, Mankouri HW. Processing of homologous recombination repair intermediates by the Sgs1-Top3-Rmi1 and Mus81-Mms4 complexes. Cell Cycle 2011; 10:3078 - 85; http://dx.doi.org/10.4161/cc.10.18.16919; PMID: 21876385
  • Wu L, Hickson ID. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 2003; 426:870 - 4; http://dx.doi.org/10.1038/nature02253; PMID: 14685245
  • Kaliraman V, Mullen JR, Fricke WM, Bastin-Shanower SA, Brill SJ. Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev 2001; 15:2730 - 40; http://dx.doi.org/10.1101/gad.932201; PMID: 11641278
  • Fricke WM, Brill SJ. Slx1-Slx4 is a second structure-specific endonuclease functionally redundant with Sgs1-Top3. Genes Dev 2003; 17:1768 - 78; http://dx.doi.org/10.1101/gad.1105203; PMID: 12832395
  • Fricke WM, Bastin-Shanower SA, Brill SJ. Substrate specificity of the Saccharomyces cerevisiae Mus81-Mms4 endonuclease. DNA Repair (Amst) 2005; 4:243 - 51; http://dx.doi.org/10.1016/j.dnarep.2004.10.001; PMID: 15590332
  • Ip SCY, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC. Identification of Holliday junction resolvases from humans and yeast. Nature 2008; 456:357 - 61; http://dx.doi.org/10.1038/nature07470; PMID: 19020614
  • Matos J, Blanco MG, Maslen S, Skehel JM, West SC. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 2011; 147:158 - 72; http://dx.doi.org/10.1016/j.cell.2011.08.032; PMID: 21962513
  • Schwartz EK, Wright WD, Ehmsen KT, Evans JE, Stahlberg H, Heyer W-D. Mus81-Mms4 functions as a single heterodimer to cleave nicked intermediates in recombinational DNA repair. Mol Cell Biol 2012; 32:3065 - 80; http://dx.doi.org/10.1128/MCB.00547-12; PMID: 22645308
  • Ira G, Malkova A, Liberi G, Foiani M, Haber JE. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 2003; 115:401 - 11; http://dx.doi.org/10.1016/S0092-8674(03)00886-9; PMID: 14622595
  • Oh SD, Lao JP, Hwang PY-H, Taylor AF, Smith GR, Hunter N. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 2007; 130:259 - 72; http://dx.doi.org/10.1016/j.cell.2007.05.035; PMID: 17662941
  • Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith GR. Single Holliday junctions are intermediates of meiotic recombination. Cell 2006; 127:1167 - 78; http://dx.doi.org/10.1016/j.cell.2006.09.050; PMID: 17174892
  • Kaliraman V, Brill SJ. Role of SGS1 and SLX4 in maintaining rDNA structure in Saccharomyces cerevisiae. Curr Genet 2002; 41:389 - 400; http://dx.doi.org/10.1007/s00294-002-0319-6; PMID: 12228808
  • Gaillard P-HL, Noguchi E, Shanahan P, Russell P. The endogenous Mus81-Eme1 complex resolves Holliday junctions by a nick and counternick mechanism. Mol Cell 2003; 12:747 - 59; http://dx.doi.org/10.1016/S1097-2765(03)00342-3; PMID: 14527419
  • Tay YD, Wu L. Overlapping roles for Yen1 and Mus81 in cellular Holliday junction processing. J Biol Chem 2010; 285:11427 - 32; http://dx.doi.org/10.1074/jbc.M110.108399; PMID: 20178992
  • Ho CK, Mazón G, Lam AF, Symington LS. Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Mol Cell 2010; 40:988 - 1000; http://dx.doi.org/10.1016/j.molcel.2010.11.016; PMID: 21172663
  • Ashton TM, Mankouri HW, Heidenblut A, McHugh PJ, Hickson ID. Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae. Mol Cell Biol 2011; 31:1921 - 33; http://dx.doi.org/10.1128/MCB.01130-10; PMID: 21343337
  • Mazón G, Lam AF, Ho CK, Kupiec M, Symington LS. The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nat Struct Mol Biol 2012; 19:964 - 71; http://dx.doi.org/10.1038/nsmb.2359; PMID: 22885325
  • Szakal B, Branzei D. Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover. EMBO J 2013; 32:1155 - 67; http://dx.doi.org/10.1038/emboj.2013.67; PMID: 23531881
  • Gallo-Fernández M, Saugar I, Ortiz-Bazán MÁ, Vázquez MV, Tercero JA. Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4. Nucleic Acids Res 2012; 40:8325 - 35; http://dx.doi.org/10.1093/nar/gks599; PMID: 22730299
  • Matos J, Blanco MG, West SC. Cell-Cycle Kinases Coordinate the Resolution of Recombination Intermediates with Chromosome Segregation. Cell Rep 2013;1–11.
  • Kosugi S, Hasebe M, Tomita M, Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 2009; 106:10171 - 6; http://dx.doi.org/10.1073/pnas.0900604106; PMID: 19520826
  • Loog M, Morgan DO. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 2005; 434:104 - 8; http://dx.doi.org/10.1038/nature03329; PMID: 15744308
  • Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 1998; 2:709 - 18; http://dx.doi.org/10.1016/S1097-2765(00)80286-5; PMID: 9885559
  • Jin F, Liu H, Liang F, Rizkallah R, Hurt MM, Wang Y. Temporal control of the dephosphorylation of Cdk substrates by mitotic exit pathways in budding yeast. Proc Natl Acad Sci U S A 2008; 105:16177 - 82; http://dx.doi.org/10.1073/pnas.0808719105; PMID: 18845678
  • Stegmeier F, Amon A. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 2004; 38:203 - 32; http://dx.doi.org/10.1146/annurev.genet.38.072902.093051; PMID: 15568976
  • Rock JM, Amon A. The FEAR network. Curr Biol 2009; 19:R1063 - 8; http://dx.doi.org/10.1016/j.cub.2009.10.002; PMID: 20064401
  • Ross KE, Cohen-Fix O. A role for the FEAR pathway in nuclear positioning during anaphase. Dev Cell 2004; 6:729 - 35; http://dx.doi.org/10.1016/S1534-5807(04)00128-5; PMID: 15130497
  • Sullivan M, Higuchi T, Katis VL, Uhlmann F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 2004; 117:471 - 82; http://dx.doi.org/10.1016/S0092-8674(04)00415-5; PMID: 15137940
  • Torres-Rosell J, Machín F, Jarmuz A, Aragón L. Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell Cycle 2004; 3:496 - 502; http://dx.doi.org/10.4161/cc.3.4.802; PMID: 15004526
  • Machín F, Torres-Rosell J, Jarmuz A, Aragón L. Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. J Cell Biol 2005; 168:209 - 19; http://dx.doi.org/10.1083/jcb.200408087; PMID: 15657393
  • Khmelinskii A, Lawrence C, Roostalu J, Schiebel E. Cdc14-regulated midzone assembly controls anaphase B. J Cell Biol 2007; 177:981 - 93; http://dx.doi.org/10.1083/jcb.200702145; PMID: 17562791
  • Jaspersen SL, Charles JF, Tinker-Kulberg RL, Morgan DO. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol Biol Cell 1998; 9:2803 - 17; http://dx.doi.org/10.1091/mbc.9.10.2803; PMID: 9763445
  • Jaspersen SL, Morgan DO. Cdc14 activates cdc15 to promote mitotic exit in budding yeast. Curr Biol 2000; 10:615 - 8; http://dx.doi.org/10.1016/S0960-9822(00)00491-7; PMID: 10837230
  • Sanchez-Diaz A, Nkosi PJ, Murray S, Labib K. The Mitotic Exit Network and Cdc14 phosphatase initiate cytokinesis by counteracting CDK phosphorylations and blocking polarised growth. EMBO J 2012; 31:3620 - 34; http://dx.doi.org/10.1038/emboj.2012.224; PMID: 22872148
  • Shou W, Seol JH, Shevchenko A, Baskerville C, Moazed D, Chen ZW, Jang J, Shevchenko A, Charbonneau H, Deshaies RJ. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 1999; 97:233 - 44; http://dx.doi.org/10.1016/S0092-8674(00)80733-3; PMID: 10219244
  • Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS. Global analysis of protein expression in yeast. Nature 2003; 425:737 - 41; http://dx.doi.org/10.1038/nature02046; PMID: 14562106
  • D’Amours D, Stegmeier F, Amon A. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 2004; 117:455 - 69; http://dx.doi.org/10.1016/S0092-8674(04)00413-1; PMID: 15137939
  • Hennessy KM, Lee A, Chen E, Botstein D. A group of interacting yeast DNA replication genes. Genes Dev 1991; 5:958 - 69; http://dx.doi.org/10.1101/gad.5.6.958; PMID: 2044962
  • Dulev S, de Renty C, Mehta R, Minkov I, Schwob E, Strunnikov A. Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants. Proc Natl Acad Sci U S A 2009; 106:14466 - 71; http://dx.doi.org/10.1073/pnas.0900190106; PMID: 19666479
  • Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 2004; 21:947 - 62; http://dx.doi.org/10.1002/yea.1142; PMID: 15334558
  • Quevedo O, García-Luis J, Matos-Perdomo E, Aragón L, Machín F. Nondisjunction of a single chromosome leads to breakage and activation of DNA damage checkpoint in G2. PLoS Genet 2012; 8:e1002509; http://dx.doi.org/10.1371/journal.pgen.1002509; PMID: 22363215

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.