1,172
Views
15
CrossRef citations to date
0
Altmetric
Report

Ewing sarcoma EWS protein regulates midzone formation by recruiting Aurora B kinase to the midzone

, , , , , & show all
Pages 2391-2399 | Received 29 Apr 2014, Accepted 22 May 2014, Published online: 19 Jun 2014

References

  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, Kovar H, Joubert I, de Jong P, Rouleau G, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359:162 - 5; http://dx.doi.org/10.1038/359162a0; PMID: 1522903
  • Toomey EC, Schiffman JD, Lessnick SL. Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene 2010; 29:4504 - 16; http://dx.doi.org/10.1038/onc.2010.205; PMID: 20543858
  • Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994; 6:146 - 51; http://dx.doi.org/10.1038/ng0294-146; PMID: 8162068
  • Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT, Shapiro DN. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 1995; 10:1229 - 34; PMID: 7700648
  • Kaneko Y, Yoshida K, Handa M, Toyoda Y, Nishihira H, Tanaka Y, Sasaki Y, Ishida S, Higashino F, Fujinaga K. Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 1996; 15:115 - 21; http://dx.doi.org/10.1002/(SICI)1098-2264(199602)15:2<115::AID-GCC6>3.0.CO;2-6; PMID: 8834175
  • Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H, Delattre O. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 1997; 14:1159 - 64; http://dx.doi.org/10.1038/sj.onc.1200933; PMID: 9121764
  • Ng TL, O’Sullivan MJ, Pallen CJ, Hayes M, Clarkson PW, Winstanley M, Sorensen PH, Nielsen TO, Horsman DE. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007; 9:459 - 63; http://dx.doi.org/10.2353/jmoldx.2007.070009; PMID: 17620387
  • Abaan OD, Levenson A, Khan O, Furth PA, Uren A, Toretsky JA. PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s Sarcoma tumorigenesis. Oncogene 2005; 24:2715 - 22; http://dx.doi.org/10.1038/sj.onc.1208247; PMID: 15782144
  • Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR, Lessnick SL. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma. Cancer Cell 2006; 9:405 - 16; http://dx.doi.org/10.1016/j.ccr.2006.04.004; PMID: 16697960
  • Joo J, Christensen L, Warner K, States L, Kang HG, Vo K, Lawlor ER, May WA. GLI1 is a central mediator of EWS/FLI1 signaling in Ewing tumors. PLoS One 2009; 4:e7608; http://dx.doi.org/10.1371/journal.pone.0007608; PMID: 19859563
  • Beauchamp E, Bulut G, Abaan O, Chen K, Merchant A, Matsui W, Endo Y, Rubin JS, Toretsky J, Uren A. GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein. J Biol Chem 2009; 284:9074 - 82; http://dx.doi.org/10.1074/jbc.M806233200; PMID: 19189974
  • Zwerner JP, Joo J, Warner KL, Christensen L, Hu-Lieskovan S, Triche TJ, May WA. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene 2008; 27:3282 - 91; http://dx.doi.org/10.1038/sj.onc.1210991; PMID: 18084326
  • Kinsey M, Smith R, Iyer AK, McCabe ER, Lessnick SL. EWS/FLI and its downstream target NR0B1 interact directly to modulate transcription and oncogenesis in Ewing’s sarcoma. Cancer Res 2009; 69:9047 - 55; http://dx.doi.org/10.1158/0008-5472.CAN-09-1540; PMID: 19920188
  • Sohn EJ, Li H, Reidy K, Beers LF, Christensen BL, Lee SB. EWS/FLI1 oncogene activates caspase 3 transcription and triggers apoptosis in vivo. Cancer Res 2010; 70:1154 - 63; http://dx.doi.org/10.1158/0008-5472.CAN-09-1993; PMID: 20103643
  • Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, Abaan OD, Chou TH, Dakshanamurthy S, Brown ML, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med 2009; 15:750 - 6; http://dx.doi.org/10.1038/nm.1983; PMID: 19584866
  • Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP, Rice AM, Lee SB, Uren A. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res 2006; 66:5574 - 81; http://dx.doi.org/10.1158/0008-5472.CAN-05-3293; PMID: 16740692
  • McKinsey EL, Parrish JK, Irwin AE, Niemeyer BF, Kern HB, Birks DK, Jedlicka P. A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs. Oncogene 2011; 30:4910 - 20; http://dx.doi.org/10.1038/onc.2011.197; PMID: 21643012
  • Ozaki T, Paulussen M, Poremba C, Brinkschmidt C, Rerin J, Ahrens S, Hoffmann C, Hillmann A, Wai D, Schaefer KL, et al. Genetic imbalances revealed by comparative genomic hybridization in Ewing tumors. Genes Chromosomes Cancer 2001; 32:164 - 71; http://dx.doi.org/10.1002/gcc.1178; PMID: 11550284
  • Bown NP, Reid MM, Malcolm AJ, Davison EV, Craft AW, Pearson AD. Cytogenetic abnormalities of small round cell tumours. Med Pediatr Oncol 1994; 23:124 - 9; http://dx.doi.org/10.1002/mpo.2950230210; PMID: 8202034
  • Azuma M, Embree LJ, Sabaawy H, Hickstein DD. Ewing sarcoma protein ewsr1 maintains mitotic integrity and proneural cell survival in the zebrafish embryo. PLoS One 2007; 2:e979; http://dx.doi.org/10.1371/journal.pone.0000979; PMID: 17912356
  • Embree LJ, Azuma M, Hickstein DD. Ewing sarcoma fusion protein EWSR1/FLI1 interacts with EWSR1 leading to mitotic defects in zebrafish embryos and human cell lines. Cancer Res 2009; 69:4363 - 71; http://dx.doi.org/10.1158/0008-5472.CAN-08-3229; PMID: 19417137
  • Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 2013; 32:325 - 40; http://dx.doi.org/10.1007/s10555-013-9427-7; PMID: 23605440
  • Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal instability. Curr Biol 2010; 20:R285 - 95; http://dx.doi.org/10.1016/j.cub.2010.01.034; PMID: 20334839
  • Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 2009; 10:478 - 87; http://dx.doi.org/10.1038/nrm2718; PMID: 19546858
  • Carmena M, Wheelock M, Funabiki H, Earnshaw WC. The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 2012; 13:789 - 803; http://dx.doi.org/10.1038/nrm3474; PMID: 23175282
  • Lee YM, Kim W. Kinesin superfamily protein member 4 (KIF4) is localized to midzone and midbody in dividing cells. Exp Mol Med 2004; 36:93 - 7; http://dx.doi.org/10.1038/emm.2004.13; PMID: 15031677
  • Gruneberg U, Neef R, Honda R, Nigg EA, Barr FA. Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J Cell Biol 2004; 166:167 - 72; http://dx.doi.org/10.1083/jcb.200403084; PMID: 15263015
  • Nunes Bastos R, Gandhi SR, Baron RD, Gruneberg U, Nigg EA, Barr FA. Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A. J Cell Biol 2013; 202:605 - 21; http://dx.doi.org/10.1083/jcb.201301094; PMID: 23940115
  • Douglas ME, Mishima M. Still entangled: assembly of the central spindle by multiple microtubule modulators. Semin Cell Dev Biol 2010; 21:899 - 908; http://dx.doi.org/10.1016/j.semcdb.2010.08.005; PMID: 20732438
  • Speliotes EK, Uren A, Vaux D, Horvitz HR. The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol Cell 2000; 6:211 - 23; http://dx.doi.org/10.1016/S1097-2765(00)00023-X; PMID: 10983970
  • Eckley DM, Ainsztein AM, Mackay AM, Goldberg IG, Earnshaw WC. Chromosomal proteins and cytokinesis: patterns of cleavage furrow formation and inner centromere protein positioning in mitotic heterokaryons and mid-anaphase cells. J Cell Biol 1997; 136:1169 - 83; http://dx.doi.org/10.1083/jcb.136.6.1169; PMID: 9087435
  • Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 2002; 157:1175 - 86; http://dx.doi.org/10.1083/jcb.200111052; PMID: 12082078
  • Cesario JM, Jang JK, Redding B, Shah N, Rahman T, McKim KS. Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators. J Cell Sci 2006; 119:4770 - 80; http://dx.doi.org/10.1242/jcs.03235; PMID: 17077127
  • Khmelinskii A, Schiebel E. Assembling the spindle midzone in the right place at the right time. Cell Cycle 2008; 7:283 - 6; http://dx.doi.org/10.4161/cc.7.3.5349; PMID: 18235228
  • Murata-Hori M, Tatsuka M, Wang YL. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol Biol Cell 2002; 13:1099 - 108; http://dx.doi.org/10.1091/mbc.01-09-0467; PMID: 11950924
  • Thandapani P, O’Connor TR, Bailey TL, Richard S. Defining the RGG/RG motif. Mol Cell 2013; 50:613 - 23; http://dx.doi.org/10.1016/j.molcel.2013.05.021; PMID: 23746349
  • Vázquez-Novelle MD, Petronczki M. Relocation of the chromosomal passenger complex prevents mitotic checkpoint engagement at anaphase. Curr Biol 2010; 20:1402 - 7; http://dx.doi.org/10.1016/j.cub.2010.06.036; PMID: 20619651
  • Wakahara K, Ohno T, Kimura M, Masuda T, Nozawa S, Dohjima T, Yamamoto T, Nagano A, Kawai G, Matsuhashi A, et al. EWS-Fli1 up-regulates expression of the Aurora A and Aurora B kinases. Mol Cancer Res 2008; 6:1937 - 45; http://dx.doi.org/10.1158/1541-7786.MCR-08-0054; PMID: 19074838
  • Sumara I, Quadroni M, Frei C, Olma MH, Sumara G, Ricci R, Peter M. A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev Cell 2007; 12:887 - 900; http://dx.doi.org/10.1016/j.devcel.2007.03.019; PMID: 17543862
  • Leemann-Zakaryan RP, Pahlich S, Sedda MJ, Quero L, Grossenbacher D, Gehring H. Dynamic subcellular localization of the Ewing sarcoma proto-oncoprotein and its association with and stabilization of microtubules. J Mol Biol 2009; 386:1 - 13; http://dx.doi.org/10.1016/j.jmb.2008.12.039; PMID: 19133275
  • Kim JD, Kako K, Kakiuchi M, Park GG, Fukamizu A. EWS is a substrate of type I protein arginine methyltransferase, PRMT8. Int J Mol Med 2008; 22:309 - 15; PMID: 18698489
  • Araya N, Hiraga H, Kako K, Arao Y, Kato S, Fukamizu A. Transcriptional down-regulation through nuclear exclusion of EWS methylated by PRMT1. Biochem Biophys Res Commun 2005; 329:653 - 60; http://dx.doi.org/10.1016/j.bbrc.2005.02.018; PMID: 15737635
  • Pahlich S, Zakaryan RP, Gehring H. Identification of proteins interacting with protein arginine methyltransferase 8: the Ewing sarcoma (EWS) protein binds independent of its methylation state. Proteins 2008; 72:1125 - 37; http://dx.doi.org/10.1002/prot.22004; PMID: 18320585
  • Pahlich S, Bschir K, Chiavi C, Belyanskaya L, Gehring H. Different methylation characteristics of protein arginine methyltransferase 1 and 3 toward the Ewing Sarcoma protein and a peptide. Proteins 2005; 61:164 - 75; http://dx.doi.org/10.1002/prot.20579; PMID: 16044463

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.