1,494
Views
34
CrossRef citations to date
0
Altmetric
Report

Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion

, , , , , , , , , , & show all
Pages 2431-2445 | Received 06 Mar 2014, Accepted 01 Jun 2014, Published online: 16 Jun 2014

References

  • Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 2009; 9:644 - 54; http://dx.doi.org/10.1038/nrc2682; PMID: 19657341
  • Sharma S, Brosh RM Jr.. Unique and important consequences of RECQ1 deficiency in mammalian cells. Cell Cycle 2008; 7:989 - 1000; http://dx.doi.org/10.4161/cc.7.8.5707; PMID: 18414032
  • Kawabe T, Tsuyama N, Kitao S, Nishikawa K, Shimamoto A, Shiratori M, Matsumoto T, Anno K, Sato T, Mitsui Y, et al. Differential regulation of human RecQ family helicases in cell transformation and cell cycle. Oncogene 2000; 19:4764 - 72; http://dx.doi.org/10.1038/sj.onc.1203841; PMID: 11032027
  • Futami K, Kumagai E, Makino H, Goto H, Takagi M, Shimamoto A, Furuichi Y. Induction of mitotic cell death in cancer cells by small interference RNA suppressing the expression of RecQL1 helicase. Cancer Sci 2008; 99:71 - 80; PMID: 17953710
  • Mendoza-Maldonado R, Faoro V, Bajpai S, Berti M, Odreman F, Vindigni M, Ius T, Ghasemian A, Bonin S, Skrap M, et al. The human RECQ1 helicase is highly expressed in glioblastoma and plays an important role in tumor cell proliferation. Mol Cancer 2011; 10:83; PMID: 21752281
  • Sanada S, Futami K, Terada A, Yonemoto K, Ogasawara S, Akiba J, Yasumoto M, Sumi A, Ushijima K, Kamura T, et al. RECQL1 DNA repair helicase: a potential therapeutic target and a proliferative marker against ovarian cancer. PLoS One 2013; 8:e72820; http://dx.doi.org/10.1371/journal.pone.0072820; PMID: 23951333
  • Arai A, Chano T, Futami K, Furuichi Y, Ikebuchi K, Inui T, Tameno H, Ochi Y, Shimada T, Hisa Y, et al. RECQL1 and WRN proteins are potential therapeutic targets in head and neck squamous cell carcinoma. Cancer Res 2011; 71:4598 - 607; http://dx.doi.org/10.1158/0008-5472.CAN-11-0320; PMID: 21571861
  • Futami K, Ogasawara S, Goto H, Yano H, Furuichi Y. RecQL1 DNA repair helicase: A potential tumor marker and therapeutic target against hepatocellular carcinoma. Int J Mol Med 2010; 25:537 - 45; PMID: 20198302
  • Futami K, Kumagai E, Makino H, Sato A, Takagi M, Shimamoto A, Furuichi Y. Anticancer activity of RecQL1 helicase siRNA in mouse xenograft models. Cancer Sci 2008; 99:1227 - 36; http://dx.doi.org/10.1111/j.1349-7006.2008.00794.x; PMID: 18422747
  • Xu L, Geman D, Winslow RL. Large-scale integration of cancer microarray data identifies a robust common cancer signature. BMC Bioinformatics 2007; 8:275; http://dx.doi.org/10.1186/1471-2105-8-275; PMID: 17663766
  • Popuri V, Croteau DL, Brosh RM Jr., Bohr VA. RECQ1 is required for cellular resistance to replication stress and catalyzes strand exchange on stalled replication fork structures. Cell Cycle 2012; 11:4252 - 65; http://dx.doi.org/10.4161/cc.22581; PMID: 23095637
  • Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, Odreman F, Glatter T, Graziano S, Mendoza-Maldonado R, et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 2013; 20:347 - 54; http://dx.doi.org/10.1038/nsmb.2501; PMID: 23396353
  • Lu X, Parvathaneni S, Hara T, Lal A, Sharma S. Replication stress induces specific enrichment of RECQ1 at common fragile sites FRA3B and FRA16D. Mol Cancer 2013; 12:29; http://dx.doi.org/10.1186/1476-4598-12-29; PMID: 23601052
  • Kraus WL. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 2008; 20:294 - 302; http://dx.doi.org/10.1016/j.ceb.2008.03.006; PMID: 18450439
  • Featherstone C, Jackson SP. Ku, a DNA repair protein with multiple cellular functions?. Mutat Res 1999; 434:3 - 15; http://dx.doi.org/10.1016/S0921-8777(99)00006-3; PMID: 10377944
  • Jaehnig EJ, Kuo D, Hombauer H, Ideker TG, Kolodner RD. Checkpoint kinases regulate a global network of transcription factors in response to DNA damage. Cell Rep 2013; 4:174 - 88; http://dx.doi.org/10.1016/j.celrep.2013.05.041; PMID: 23810556
  • Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res 2014; 181:111 - 30; http://dx.doi.org/10.1667/RR13515.1; PMID: 24397478
  • Mullan PB, Quinn JE, Harkin DP. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 2006; 25:5854 - 63; PMID: 16998500
  • Shiratori M, Suzuki T, Itoh C, Goto M, Furuichi Y, Matsumoto T. WRN helicase accelerates the transcription of ribosomal RNA as a component of an RNA polymerase I-associated complex. Oncogene 2002; 21:2447 - 54; http://dx.doi.org/10.1038/sj.onc.1205334; PMID: 11971179
  • Lutomska A, Lebedev A, Scharffetter-Kochanek K, Iben S. The transcriptional response to distinct growth factors is impaired in Werner syndrome cells. Exp Gerontol 2008; 43:820 - 6; http://dx.doi.org/10.1016/j.exger.2008.06.007; PMID: 18625297
  • Johnson JE, Cao K, Ryvkin P, Wang LS, Johnson FB. Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res 2010; 38:1114 - 22; http://dx.doi.org/10.1093/nar/gkp1103; PMID: 19966276
  • Lachaud AA, Auclair-Vincent S, Massip L, Audet-Walsh E, Lebel M, Anderson A. Werner’s syndrome helicase participates in transcription of phenobarbital-inducible CYP2B genes in rat and mouse liver. Biochem Pharmacol 2010; 79:463 - 70; http://dx.doi.org/10.1016/j.bcp.2009.09.002; PMID: 19737542
  • Labbé A, Turaga RV, Paquet ER, Garand C, Lebel M. Expression profiling of mouse embryonic fibroblasts with a deletion in the helicase domain of the Werner Syndrome gene homologue treated with hydrogen peroxide. BMC Genomics 2010; 11:127; http://dx.doi.org/10.1186/1471-2164-11-127; PMID: 20175907
  • Turaga RV, Paquet ER, Sild M, Vignard J, Garand C, Johnson FB, Masson JY, Lebel M. The Werner syndrome protein affects the expression of genes involved in adipogenesis and inflammation in addition to cell cycle and DNA damage responses. Cell Cycle 2009; 8:2080 - 92; http://dx.doi.org/10.4161/cc.8.13.8925; PMID: 19502800
  • Deschênes F, Massip L, Garand C, Lebel M. In vivo misregulation of genes involved in apoptosis, development and oxidative stress in mice lacking both functional Werner syndrome protein and poly(ADP-ribose) polymerase-1. Hum Mol Genet 2005; 14:3293 - 308; http://dx.doi.org/10.1093/hmg/ddi362; PMID: 16195394
  • Kyng KJ, May A, Kølvraa S, Bohr VA. Gene expression profiling in Werner syndrome closely resembles that of normal aging. Proc Natl Acad Sci U S A 2003; 100:12259 - 64; http://dx.doi.org/10.1073/pnas.2130723100; PMID: 14527998
  • Aygün O, Xu X, Liu Y, Takahashi H, Kong SE, Conaway RC, Conaway JW, Svejstrup JQ. Direct inhibition of RNA polymerase II transcription by RECQL5. J Biol Chem 2009; 284:23197 - 203; http://dx.doi.org/10.1074/jbc.M109.015750; PMID: 19570979
  • Contreras-Levicoy J, Moreira-Ramos S, Rojas DA, Urbina F, Maldonado E. Transcription directed by human core promoters with a HomolD box sequence requires DDB1, RECQL and RNA polymerase II machinery. Gene 2012; 505:318 - 23; http://dx.doi.org/10.1016/j.gene.2012.05.059; PMID: 22705827
  • Sharma S, Brosh RM Jr.. Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLoS One 2007; 2:e1297; http://dx.doi.org/10.1371/journal.pone.0001297; PMID: 18074021
  • Sharma S, Phatak P, Stortchevoi A, Jasin M, Larocque JR. RECQ1 plays a distinct role in cellular response to oxidative DNA damage. DNA Repair (Amst) 2012; 11:537 - 49; http://dx.doi.org/10.1016/j.dnarep.2012.04.003; PMID: 22542292
  • Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, Odreman F, Glatter T, Graziano S, Mendoza-Maldonado R, et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. [advance online publication] Nat Struct Mol Biol 2013; 20:347 - 54; http://dx.doi.org/10.1038/nsmb.2501; PMID: 23396353
  • Thangavel S, Mendoza-Maldonado R, Tissino E, Sidorova JM, Yin J, Wang W, Monnat RJ Jr., Falaschi A, Vindigni A. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol Cell Biol 2010; 30:1382 - 96; http://dx.doi.org/10.1128/MCB.01290-09; PMID: 20065033
  • Subramanian M, Francis P, Bilke S, Li XL, Hara T, Lu X, Jones MF, Walker RL, Zhu Y, Pineda M, et al. A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis. Oncogene 2014; http://dx.doi.org/10.1038/onc.2014.46; PMID: 24662829
  • Maizels N, Gray LT. The G4 genome. PLoS Genet 2013; 9:e1003468; http://dx.doi.org/10.1371/journal.pgen.1003468; PMID: 23637633
  • Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res 2005; 33:2908 - 16; http://dx.doi.org/10.1093/nar/gki609; PMID: 15914667
  • Lawrence DA. Computational Methods for Predicting Intramolecular G-Quadruplexes in Nucleotide Sequences. In: Paramjeet B, ed., 2004:590-1.
  • Sharma S, Stumpo DJ, Balajee AS, Bock CB, Lansdorp PM, Brosh RM Jr., Blackshear PJ. RECQL, a member of the RecQ family of DNA helicases, suppresses chromosomal instability. Mol Cell Biol 2007; 27:1784 - 94; http://dx.doi.org/10.1128/MCB.01620-06; PMID: 17158923
  • Li XL, Hara T, Choi Y, Subramanian M, Francis P, Bilke S, Walker RL, Pineda M, Zhu Y, Yang Y, et al. A p21-ZEB1 complex inhibits epithelial-mesenchymal transition through the microRNA 183-96-182 cluster. Mol Cell Biol 2014; 34:533 - 50; http://dx.doi.org/10.1128/MCB.01043-13; PMID: 24277930
  • Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123:725 - 31; http://dx.doi.org/10.1007/s10549-009-0674-9; PMID: 20020197
  • Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature 2007; 448:767 - 74; http://dx.doi.org/10.1038/nature05985; PMID: 17700693
  • Mortusewicz O, Herr P, Helleday T. Early replication fragile sites: where replication-transcription collisions cause genetic instability. EMBO J 2013; 32:493 - 5; http://dx.doi.org/10.1038/emboj.2013.20; PMID: 23376922
  • Su Y, Meador JA, Calaf GM, Proietti De-Santis L, Zhao Y, Bohr VA, Balajee AS. Human RecQL4 helicase plays critical roles in prostate carcinogenesis. Cancer Res 2010; 70:9207 - 17; http://dx.doi.org/10.1158/0008-5472.CAN-10-1743; PMID: 21045146
  • Sarasin A, Kauffmann A. Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat Res 2008; 659:49 - 55; http://dx.doi.org/10.1016/j.mrrev.2007.12.002; PMID: 18308619
  • Barbano R, Copetti M, Perrone G, Pazienza V, Muscarella LA, Balsamo T, Storlazzi CT, Ripoli M, Rinaldi M, Valori VM, et al. High RAD51 mRNA expression characterize estrogen receptor-positive/progesteron receptor-negative breast cancer and is associated with patient’s outcome. Int J Cancer 2011; 129:536 - 45; http://dx.doi.org/10.1002/ijc.25736; PMID: 21064098
  • Martinez-Marignac VL, Rodrigue A, Davidson D, Couillard M, Al-Moustafa AE, Abramovitz M, Foulkes WD, Masson JY, Aloyz R. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells. PLoS One 2011; 6:e16394; http://dx.doi.org/10.1371/journal.pone.0016394; PMID: 21283680
  • Broustas CG, Zhu A, Lieberman HB. Rad9 protein contributes to prostate tumor progression by promoting cell migration and anoikis resistance. J Biol Chem 2012; 287:41324 - 33; http://dx.doi.org/10.1074/jbc.M112.402784; PMID: 23066031
  • Yin Y, Zhu A, Jin YJ, Liu YX, Zhang X, Hopkins KM, Lieberman HB. Human RAD9 checkpoint control/proapoptotic protein can activate transcription of p21. Proc Natl Acad Sci U S A 2004; 101:8864 - 9; http://dx.doi.org/10.1073/pnas.0403130101; PMID: 15184659
  • Lao VV, Welcsh P, Luo Y, Carter KT, Dzieciatkowski S, Dintzis S, Meza J, Sarvetnick NE, Monnat RJ Jr., Loeb LA, et al. Altered RECQ Helicase Expression in Sporadic Primary Colorectal Cancers. Transl Oncol 2013; 6:458 - 69; http://dx.doi.org/10.1593/tlo.13238; PMID: 23908689
  • Brosh RM Jr.. DNA helicases involved in DNA repair and their roles in cancer. [advance online publication] Nat Rev Cancer 2013; 13:542 - 58; http://dx.doi.org/10.1038/nrc3560; PMID: 23842644
  • Peters D, Freund J, Ochs RL. Genome-wide transcriptional analysis of carboplatin response in chemosensitive and chemoresistant ovarian cancer cells. Mol Cancer Ther 2005; 4:1605 - 16; PMID: 16227411
  • Moreaux J, Rème T, Leonard W, Veyrune J-L, Requirand G, Goldschmidt H, Hose D, Klein B. Development of gene expression-based score to predict sensitivity of multiple myeloma cells to DNA methylation inhibitors. Mol Cancer Ther 2012; 11:2685 - 92; http://dx.doi.org/10.1158/1535-7163.MCT-12-0721; PMID: 23087257
  • Cotton RT, Li D, Scherer SE, Muzny DM, Hodges SE, Catania RL, Witkiewicz AK, Brody JR, Kennedy EP, Yeo CJ, et al. Single nucleotide polymorphism in RECQL and survival in resectable pancreatic adenocarcinoma. HPB (Oxford) 2009; 11:435 - 44; http://dx.doi.org/10.1111/j.1477-2574.2009.00089.x; PMID: 19768149
  • Li D, Frazier M, Evans DB, Hess KR, Crane CH, Jiao L, Abbruzzese JL. Single nucleotide polymorphisms of RecQ1, RAD54L, and ATM genes are associated with reduced survival of pancreatic cancer. J Clin Oncol 2006; 24:1720 - 8; http://dx.doi.org/10.1200/JCO.2005.04.4206; PMID: 16520463
  • Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, Knudsen ES. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle 2012; 11:2756 - 61; http://dx.doi.org/10.4161/cc.21195; PMID: 22767154
  • Johnson N, Shapiro GI. Cyclin-dependent kinase 4/6 inhibition in cancer therapy. Cell Cycle 2012; 11:3913; http://dx.doi.org/10.4161/cc.22390; PMID: 23032266
  • Lee SK, Johnson RE, Yu SL, Prakash L, Prakash S. Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 1999; 286:2339 - 42; http://dx.doi.org/10.1126/science.286.5448.2339; PMID: 10600744
  • Grierson PM, Lillard K, Behbehani GK, Combs KA, Bhattacharyya S, Acharya S, Groden J. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription. Hum Mol Genet 2012; 21:1172 - 83; http://dx.doi.org/10.1093/hmg/ddr545; PMID: 22106380
  • Popuri V, Bachrati CZ, Muzzolini L, Mosedale G, Costantini S, Giacomini E, Hickson ID, Vindigni A. The Human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities. J Biol Chem 2008; 283:17766 - 76; PMID: 18448429
  • Hirano Y, Ishii K, Kumeta M, Furukawa K, Takeyasu K, Horigome T. Proteomic and targeted analytical identification of BXDC1 and EBNA1BP2 as dynamic scaffold proteins in the nucleolus. Genes Cells 2009; 14:155 - 66; http://dx.doi.org/10.1111/j.1365-2443.2008.01262.x; PMID: 19170763
  • Balajee AS, Machwe A, May A, Gray MD, Oshima J, Martin GM, Nehlin JO, Brosh R, Orren DK, Bohr VA. The Werner syndrome protein is involved in RNA polymerase II transcription. Mol Biol Cell 1999; 10:2655 - 68; http://dx.doi.org/10.1091/mbc.10.8.2655; PMID: 10436020
  • Schurman SH, Hedayati M, Wang Z, Singh DK, Speina E, Zhang Y, Becker K, Macris M, Sung P, Wilson DM 3rd, et al. Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Mol Genet 2009; 18:3470 - 83; http://dx.doi.org/10.1093/hmg/ddp291; PMID: 19567405
  • Aygün O, Svejstrup J, Liu Y. A RECQ5-RNA polymerase II association identified by targeted proteomic analysis of human chromatin. Proc Natl Acad Sci U S A 2008; 105:8580 - 4; http://dx.doi.org/10.1073/pnas.0804424105; PMID: 18562274
  • Izumikawa K, Yanagida M, Hayano T, Tachikawa H, Komatsu W, Shimamoto A, Futami K, Furuichi Y, Shinkawa T, Yamauchi Y, et al. Association of human DNA helicase RecQ5beta with RNA polymerase II and its possible role in transcription. Biochem J 2008; 413:505 - 16; http://dx.doi.org/10.1042/BJ20071392; PMID: 18419580
  • Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, Wang LS, Johnson FB. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res 2008; 36:144 - 56; http://dx.doi.org/10.1093/nar/gkm986; PMID: 17999996
  • Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 2002; 99:11593 - 8; http://dx.doi.org/10.1073/pnas.182256799; PMID: 12195017
  • Cogoi S, Xodo LE. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res 2006; 34:2536 - 49; http://dx.doi.org/10.1093/nar/gkl286; PMID: 16687659
  • Thakur RK, Kumar P, Halder K, Verma A, Kar A, Parent JL, Basundra R, Kumar A, Chowdhury S. Metastases suppressor NM23-H2 interaction with G-quadruplex DNA within c-MYC promoter nuclease hypersensitive element induces c-MYC expression. Nucleic Acids Res 2009; 37:172 - 83; http://dx.doi.org/10.1093/nar/gkn919; PMID: 19033359
  • Cogoi S, Paramasivam M, Membrino A, Yokoyama KK, Xodo LE. The KRAS promoter responds to Myc-associated zinc finger and poly(ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J Biol Chem 2010; 285:22003 - 16; PMID: 20457603
  • Balasubramanian S, Hurley LH, Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat Rev Drug Discov 2011; 10:261 - 75; http://dx.doi.org/10.1038/nrd3428; PMID: 21455236
  • Gray LT, Vallur AC, Eddy J, Maizels N. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat Chem Biol 2014; 10:313 - 8; http://dx.doi.org/10.1038/nchembio.1475; PMID: 24609361
  • Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215; http://dx.doi.org/10.4061/2011/724215; PMID: 21977309
  • Wang P, Rennekamp AJ, Yuan Y, Lieberman PM. Topoisomerase I and RecQL1 function in Epstein-Barr virus lytic reactivation. J Virol 2009; 83:8090 - 8; http://dx.doi.org/10.1128/JVI.02379-08; PMID: 19494003
  • Parvathaneni S, Stortchevoi A, Sommers JA, Brosh RM Jr., Sharma S. Human RECQ1 interacts with Ku70/80 and modulates DNA end-joining of double-strand breaks. PLoS One 2013; 8:e62481; http://dx.doi.org/10.1371/journal.pone.0062481; PMID: 23650516
  • Beneke S. Regulation of chromatin structure by poly(ADP-ribosyl)ation. Front Genet 2012; 3:169; http://dx.doi.org/10.3389/fgene.2012.00169; PMID: 22969794
  • Ju B-G, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 2006; 312:1798 - 802; http://dx.doi.org/10.1126/science.1127196; PMID: 16794079
  • Pankotai T, Soutoglou E. Double strand breaks: hurdles for RNA polymerase II transcription?. Transcription 2013; 4:34 - 8; http://dx.doi.org/10.4161/trns.22879; PMID: 23340208
  • Pankotai T, Bonhomme C, Chen D, Soutoglou E. DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nat Struct Mol Biol 2012; 19:276 - 82; http://dx.doi.org/10.1038/nsmb.2224; PMID: 22343725

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.