2,455
Views
71
CrossRef citations to date
0
Altmetric
Report

Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment

Involvement of cell cycle activation

, , , , , , , , & show all
Pages 2446-2458 | Received 17 Mar 2014, Accepted 01 Jun 2014, Published online: 25 Jun 2014

References

  • Davidoff GN, Roth EJ, Richards JS. Cognitive deficits in spinal cord injury: epidemiology and outcome. Arch Phys Med Rehabil 1992; 73:275 - 84; PMID: 1543433
  • Roth E, Davidoff G, Thomas P, Doljanac R, Dijkers M, Berent S, Morris J, Yarkony G. A controlled study of neuropsychological deficits in acute spinal cord injury patients. Paraplegia 1989; 27:480 - 9; http://dx.doi.org/10.1038/sc.1989.75; PMID: 2608301
  • Dowler RN, O’Brien SA, Haaland KY, Harrington DL, Feel F, Fiedler K. Neuropsychological functioning following a spinal cord injury. Appl Neuropsychol 1995; 2:124 - 9; http://dx.doi.org/10.1080/09084282.1995.9645349; PMID: 16318515
  • Dowler RN, Harrington DL, Haaland KY, Swanda RM, Fee F, Fiedler K. Profiles of cognitive functioning in chronic spinal cord injury and the role of moderating variables. J Int Neuropsychol Soc 1997; 3:464 - 72; PMID: 9322406
  • Lazzaro I, Tran Y, Wijesuriya N, Craig A. Central correlates of impaired information processing in people with spinal cord injury. J Clin Neurophysiol 2013; 30:59 - 65; http://dx.doi.org/10.1097/WNP.0b013e31827edb0c; PMID: 23377444
  • Jensen MP, Kuehn CM, Amtmann D, Cardenas DD. Symptom burden in persons with spinal cord injury. Arch Phys Med Rehabil 2007; 88:638 - 45; http://dx.doi.org/10.1016/j.apmr.2007.02.002; PMID: 17466734
  • Murray RF, Asghari A, Egorov DD, Rutkowski SB, Siddall PJ, Soden RJ, Ruff R. Impact of spinal cord injury on self-perceived pre- and postmorbid cognitive, emotional and physical functioning. Spinal Cord 2007; 45:429 - 36; http://dx.doi.org/10.1038/sj.sc.3102022; PMID: 17228355
  • Strubreither W, Hackbusch B, Hermann-Gruber M, Stahr G, Jonas HP. Neuropsychological aspects of the rehabilitation of patients with paralysis from a spinal injury who also have a brain injury. Spinal Cord 1997; 35:487 - 92; http://dx.doi.org/10.1038/sj.sc.3100495; PMID: 9267911
  • Jegede AB, Rosado-Rivera D, Bauman WA, Cardozo CP, Sano M, Moyer JM, Brooks M, Wecht JM. Cognitive performance in hypotensive persons with spinal cord injury. Clin Auton Res 2010; 20:3 - 9; http://dx.doi.org/10.1007/s10286-009-0036-z; PMID: 19842013
  • Wecht JM, Bauman WA. Decentralized cardiovascular autonomic control and cognitive deficits in persons with spinal cord injury. J Spinal Cord Med 2013; 36:74 - 81; http://dx.doi.org/10.1179/2045772312Y.0000000056; PMID: 23809520
  • Zhang B, Huang Y, Su Z, Wang S, Wang S, Wang J, Wang A, Lai X. Neurological, functional, and biomechanical characteristics after high-velocity behind armor blunt trauma of the spine. J Trauma 2011; 71:1680 - 8; http://dx.doi.org/10.1097/TA.0b013e318231bce7; PMID: 22182875
  • Chang CM, Lee MH, Wang TC, Weng HH, Chung CY, Yang JT. Brain protection by methylprednisolone in rats with spinal cord injury. Neuroreport 2009; 20:968 - 72; http://dx.doi.org/10.1097/WNR.0b013e32832d0a28; PMID: 19525878
  • Felix MS, Popa N, Djelloul M, Boucraut J, Gauthier P, Bauer S, Matarazzo VA. Alteration of forebrain neurogenesis after cervical spinal cord injury in the adult rat. Front Neurosci 2012; 6:45; http://dx.doi.org/10.3389/fnins.2012.00045; PMID: 22509147
  • Wu J, Raver C, Piao C, Keller A, Faden AI. Cell cycle activation contributes to increased neuronal activity in the posterior thalamic nucleus and associated chronic hyperesthesia after rat spinal cord contusion. Neurotherapeutics 2013; 10:520 - 38; http://dx.doi.org/10.1007/s13311-013-0198-1; PMID: 23775067
  • Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 2012; 26:1191 - 201; http://dx.doi.org/10.1016/j.bbi.2012.06.008; PMID: 22728326
  • Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3:23 - 35; http://dx.doi.org/10.1038/nri978; PMID: 12511873
  • Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009; 4:399 - 418; http://dx.doi.org/10.1007/s11481-009-9164-4; PMID: 19655259
  • Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008; 118:1 - 17; http://dx.doi.org/10.1016/j.pharmthera.2007.12.004; PMID: 18374421
  • Zhao P, Waxman SG, Hains BC. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 2007; 27:8893 - 902; http://dx.doi.org/10.1523/JNEUROSCI.2209-07.2007; PMID: 17699671
  • Wu J, Stoica BA, Faden AI. Cell cycle activation and spinal cord injury. Neurotherapeutics 2011; 8:221 - 8; http://dx.doi.org/10.1007/s13311-011-0028-2; PMID: 21373950
  • Byrnes KR, Faden AI. Role of cell cycle proteins in CNS injury. Neurochem Res 2007; 32:1799 - 807; http://dx.doi.org/10.1007/s11064-007-9312-2; PMID: 17404835
  • Zhao Z, Loane DJ, Murray MG 2nd, Stoica BA, Faden AI. Comparing the predictive value of multiple cognitive, affective, and motor tasks after rodent traumatic brain injury. J Neurotrauma 2012; 29:2475 - 89; http://dx.doi.org/10.1089/neu.2012.2511; PMID: 22924665
  • Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995; 12:1 - 21; http://dx.doi.org/10.1089/neu.1995.12.1; PMID: 7783230
  • Gale K, Kerasidis H, Wrathall JR. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol 1985; 88:123 - 34; http://dx.doi.org/10.1016/0014-4886(85)90118-9; PMID: 3979506
  • Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC, Reynolds A, Hilton J, Dannals RF, Kassiou M. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J Nucl Med 2009; 50:1276 - 82; http://dx.doi.org/10.2967/jnumed.109.062265; PMID: 19617321
  • Maeda J, Higuchi M, Inaji M, Ji B, Haneda E, Okauchi T, Zhang MR, Suzuki K, Suhara T. Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res 2007; 1157:100 - 11; http://dx.doi.org/10.1016/j.brainres.2007.04.054; PMID: 17540348
  • Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 2012; 9:40; http://dx.doi.org/10.1186/1742-2094-9-40; PMID: 22369693
  • Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 2013; 136:28 - 42; http://dx.doi.org/10.1093/brain/aws322; PMID: 23365092
  • Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 2011; 70:374 - 83; http://dx.doi.org/10.1002/ana.22455; PMID: 21710619
  • Nielson JL, Sears-Kraxberger I, Strong MK, Wong JK, Willenberg R, Steward O. Unexpected survival of neurons of origin of the pyramidal tract after spinal cord injury. J Neurosci 2010; 30:11516 - 28; http://dx.doi.org/10.1523/JNEUROSCI.1433-10.2010; PMID: 20739574
  • Bonatz H, Röhrig S, Mestres P, Meyer M, Giehl KM. An axotomy model for the induction of death of rat and mouse corticospinal neurons in vivo. J Neurosci Methods 2000; 100:105 - 15; http://dx.doi.org/10.1016/S0165-0270(00)00238-7; PMID: 11040372
  • Crawley AP, Jurkiewicz MT, Yim A, Heyn S, Verrier MC, Fehlings MG, Mikulis DJ. Absence of localized grey matter volume changes in the motor cortex following spinal cord injury. Brain Res 2004; 1028:19 - 25; http://dx.doi.org/10.1016/j.brainres.2004.08.060; PMID: 15518637
  • Endo T, Spenger C, Tominaga T, Brené S, Olson L. Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling. Brain 2007; 130:2951 - 61; http://dx.doi.org/10.1093/brain/awm237; PMID: 17913768
  • Feringa ER, Vahlsing HL. Labeled corticospinal neurons one year after spinal cord transection. Neurosci Lett 1985; 58:283 - 6; http://dx.doi.org/10.1016/0304-3940(85)90067-9; PMID: 4047489
  • Fumagalli F, Madaschi L, Caffino L, Marfia G, Di Giulio AM, Racagni G, Gorio A. Acute spinal cord injury reduces brain derived neurotrohic factor expression in rat hippocampus. Neuroscience 2009; 159:936 - 9; http://dx.doi.org/10.1016/j.neuroscience.2009.01.030; PMID: 19344636
  • Ganchrow D, Bernstein JJ. Thoracic dorsal funicular lesions affect the bouton patterns on, and diameters of, layer VB pyramidal cell somata in rat hindlimb cortex. J Neurosci Res 1985; 14:71 - 81; http://dx.doi.org/10.1002/jnr.490140107; PMID: 4020899
  • Giehl KM, Tetzlaff W. BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur J Neurosci 1996; 8:1167 - 75; http://dx.doi.org/10.1111/j.1460-9568.1996.tb01284.x; PMID: 8752586
  • Hains BC, Black JA, Waxman SG. Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol 2003; 462:328 - 41; http://dx.doi.org/10.1002/cne.10733; PMID: 12794736
  • Hammond EN, Tetzlaff W, Mestres P, Giehl KM. BDNF, but not NT-3, promotes long-term survival of axotomized adult rat corticospinal neurons in vivo. Neuroreport 1999; 10:2671 - 5; http://dx.doi.org/10.1097/00001756-199908200-00043; PMID: 10574390
  • Kalil K, Schneider GE. Retrograde cortical aand axonal changes following lesions of the pyramidal tract. Brain Res 1975; 89:15 - 27; http://dx.doi.org/10.1016/0006-8993(75)90130-4; PMID: 1148840
  • Klapka N, Hermanns S, Straten G, Masanneck C, Duis S, Hamers FP, Müller D, Zuschratter W, Müller HW. Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur J Neurosci 2005; 22:3047 - 58; http://dx.doi.org/10.1111/j.1460-9568.2005.04495.x; PMID: 16367771
  • Kost SA, Oblinger MM. Immature corticospinal neurons respond to axotomy with changes in tubulin gene expression. Brain Res Bull 1993; 30:469 - 75; http://dx.doi.org/10.1016/0361-9230(93)90280-O; PMID: 8457896
  • Lau BY, Foldes AE, Alieva NO, Oliphint PA, Busch DJ, Morgan JR. Increased synapsin expression and neurite sprouting in lamprey brain after spinal cord injury. Exp Neurol 2011; 228:283 - 93; http://dx.doi.org/10.1016/j.expneurol.2011.02.003; PMID: 21316361
  • Lee BH, Lee KH, Kim UJ, Yoon DH, Sohn JH, Choi SS, Yi IG, Park YG. Injury in the spinal cord may produce cell death in the brain. Brain Res 2004; 1020:37 - 44; http://dx.doi.org/10.1016/j.brainres.2004.05.113; PMID: 15312785
  • Mason MR, Lieberman AR, Anderson PN. Corticospinal neurons up-regulate a range of growth-associated genes following intracortical, but not spinal, axotomy. Eur J Neurosci 2003; 18:789 - 802; http://dx.doi.org/10.1046/j.1460-9568.2003.02809.x; PMID: 12925005
  • Merline M, Kalil K. Cell death of corticospinal neurons is induced by axotomy before but not after innervation of spinal targets. J Comp Neurol 1990; 296:506 - 16; http://dx.doi.org/10.1002/cne.902960313; PMID: 2358550
  • Mikucki SA, Oblinger MM. Corticospinal neurons exhibit a novel pattern of cytoskeletal gene expression after injury. J Neurosci Res 1991; 30:213 - 25; http://dx.doi.org/10.1002/jnr.490300122; PMID: 1724469
  • Nielson JL, Strong MK, Steward O. A reassessment of whether cortical motor neurons die following spinal cord injury. J Comp Neurol 2011; 519:2852 - 69; http://dx.doi.org/10.1002/cne.22661; PMID: 21618218
  • Wannier T, Schmidlin E, Bloch J, Rouiller EM. A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex. J Neurotrauma 2005; 22:703 - 17; http://dx.doi.org/10.1089/neu.2005.22.703; PMID: 15941378
  • Kaas JH, Qi HX, Burish MJ, Gharbawie OA, Onifer SM, Massey JM. Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Exp Neurol 2008; 209:407 - 16; http://dx.doi.org/10.1016/j.expneurol.2007.06.014; PMID: 17692844
  • Wu J, Stoica BA, Faden AI. Cell cycle activation and spinal cord injury. Neurotherapeutics 2011; 8:221 - 8; http://dx.doi.org/10.1007/s13311-011-0028-2; PMID: 21373950
  • Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI. Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 2007; 130:2977 - 92; http://dx.doi.org/10.1093/brain/awm179; PMID: 17690131
  • Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI. Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 2003; 53:454 - 68; http://dx.doi.org/10.1002/ana.10472; PMID: 12666113
  • Tian DS, Dong Q, Pan DJ, He Y, Yu ZY, Xie MJ, Wang W. Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Brain Res 2007; 1154:206 - 14; http://dx.doi.org/10.1016/j.brainres.2007.04.005; PMID: 17482149
  • Tian DS, Xie MJ, Yu ZY, Zhang Q, Wang YH, Chen B, Chen C, Wang W. Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. Brain Res 2007; 1135:177 - 85; http://dx.doi.org/10.1016/j.brainres.2006.11.085; PMID: 17188663
  • Tian DS, Yu ZY, Xie MJ, Bu BT, Witte OW, Wang W. Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res 2006; 84:1053 - 63; http://dx.doi.org/10.1002/jnr.20999; PMID: 16862564
  • Wu J, Stoica BA, Dinizo M, Pajoohesh-Ganji A, Piao C, Faden AI. Delayed cell cycle pathway modulation facilitates recovery after spinal cord injury. Cell Cycle 2012; 11:1782 - 95; http://dx.doi.org/10.4161/cc.20153; PMID: 22510563
  • Wu J, Pajoohesh-Ganji A, Stoica BA, Dinizo M, Guanciale K, Faden AI. Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion. J Neuroinflammation 2012; 9:169; http://dx.doi.org/10.1186/1742-2094-9-169; PMID: 22784881
  • Wu J, Kharebava G, Piao C, Stoica BA, Dinizo M, Sabirzhanov B, Hanscom M, Guanciale K, Faden AI. Inhibition of E2F1/CDK1 pathway attenuates neuronal apoptosis in vitro and confers neuroprotection after spinal cord injury in vivo. PLoS One 2012; 7:e42129; http://dx.doi.org/10.1371/journal.pone.0042129; PMID: 22848730
  • Wu J, Renn CL, Faden AI, Dorsey SG. TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways. J Neurosci 2013; 33:12447 - 63; http://dx.doi.org/10.1523/JNEUROSCI.0846-13.2013; PMID: 23884949
  • Gomez-Pinilla F, Ying Z, Zhuang Y. Brain and spinal cord interaction: protective effects of exercise prior to spinal cord injury. PLoS One 2012; 7:e32298; http://dx.doi.org/10.1371/journal.pone.0032298; PMID: 22384207
  • Nardone R, Höller Y, Brigo F, Seidl M, Christova M, Bergmann J, Golaszewski S, Trinka E. Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 2013; 1504:58 - 73; http://dx.doi.org/10.1016/j.brainres.2012.12.034; PMID: 23396112
  • Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 2009; 60:202 - 13; http://dx.doi.org/10.1016/j.brainresrev.2008.12.010; PMID: 19154757
  • Ankeny DP, Popovich PG. Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 2009; 158:1112 - 21; http://dx.doi.org/10.1016/j.neuroscience.2008.07.001; PMID: 18674593
  • Kabadi SV, Stoica BA, Loane DJ, Luo T, Faden AI. CR8, a novel inhibitor of CDK, limits microglial activation, astrocytosis, neuronal loss, and neurologic dysfunction after experimental traumatic brain injury. J Cereb Blood Flow Metab 2014; 34:502 - 13; http://dx.doi.org/10.1038/jcbfm.2013.228; PMID: 24398934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.