595
Views
21
CrossRef citations to date
0
Altmetric
Report

A conserved G1 regulatory circuit promotes asynchronous behavior of nuclei sharing a common cytoplasm

, , , &
Pages 3795-3803 | Published online: 15 Sep 2010

References

  • Bloom J, Cross FR. Multiple levels of cyclin specificity in cell cycle control. Nat Rev Mol Cell Biol 2007; 8:149 - 160
  • Rao PN, Johnson RT. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 1970; 225:159 - 164
  • Gladfelter AS. Nuclear anarchy: Mitosis in multinucleated cells. Current Opinion in Microbiology 2006;
  • Hinchcliffe EH, Thompson EA, Miller FJ, Yang J, Sluder G. Nucleo-cytoplasmic interactions that control nuclear envelope breakdown and entry into mitosis in the sea urchin zygote. J Cell Sci 1999; 112:1139 - 1148
  • Demeter J, Lee SE, Haber JE, Stearns T. The DNA damage checkpoint signal in budding yeast is nuclear limited. Mol Cell 2000; 6:487 - 492
  • Rieder CL, Khodjakov A, Paliulis LV, Fortier TM, Cole RW, Sluder G. Mitosis in vertebrate somatic cells with two spindles: implications for the metaphase/anaphase transition checkpoint and cleavage. Proc Natl Acad Sci USA 1997; 94:5107 - 5112
  • Rao PN, Johnson RT. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 1970; 225:159 - 162
  • Johnson RT, Rao PN. Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature 1970; 226:717 - 722
  • Johnson RT, Rao PN. Nucleo-cytoplasmic interactions in the acheivement of nuclear synchrony in DNA synthesis and mitosis in multinucleate cells. Biol Rev Camb Philos Soc 1971; 46:97 - 155
  • Johnson RT, Rao PN, Hughes HD. Mammalian cell fusion. 3. A HeLa cell inducer of premature chromosome condensation active in cells from a variety of animal species. J Cell Physiol 1970; 76:151 - 157
  • Rao PN, Johnson RT. Mammalian cell fusion. IV. Regulation of chromosome formation from interphase nuclei by various chemical compounds. J Cell Physiol 1971; 78:217 - 223
  • Rao PN, Johnson RT. Premature chromosome condensation: a mechanism for the elimination of chromosomes in virus-fused cells. J Cell Sci 1972; 10:495 - 513
  • Alberti-Segui C, Dietrich F, Altmann-Johl R, Hoepfner D, Philippsen P. Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. PG. J Cell Sci 2001; 114
  • Gladfelter AS, Hungerbuehler AK, Philippsen P. Asynchronous nuclear division cycles in multinucleated cells. J Cell Biol 2006; 172:347 - 362
  • Simmons Kovacs LA, Nelson CL, Haase SB. Intrinsic and cyclin-dependent kinase-dependent control of spindle pole body duplication in budding yeast. Mol Biol Cell 2008; 19:3243 - 3253
  • Pringle JR, Hartwell LH. Strathern JD, Jones EW, Broach JR. The Saccharomyces cerevisiae cell cycle. The Molecular Biology of the Yeast Saccharomyces 1981; Cold Spring Harbor NY Cold Spring Harbor Laboratory 97 - 142
  • Hartwell L, Unger M. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J Cell Biol 1977; 75:422 - 435
  • Johnston GC, Pringle JP, Hartwell LH. Coordination of growth with cell division in the yeast S. cerevisiae. Exp Cell Res 1977; 105:75 - 98
  • Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 2007; 448:947 - 951
  • Hungerbuehler AK, Philippsen P, Gladfelter AS. Limited functional redundancy and oscillation of cyclins in multinucleated A. gossypii fungal cells. Eukaryot Cell 2007; 6:473 - 486
  • Hungerbuehler AK, Philippsen P, Gladfelter AS. Limited functional redundancy and oscillation of cyclins in multinucleated Ashbya gossypii fungal cells. Eukaryot Cell 2007; 6:473 - 486
  • Skotheim JM, Di Talia S, Siggia ED, Cross FR. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 2008; 454:291 - 296
  • Wijnen H, Landman A, Futcher B. The G(1) cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol Cell Biol 2002; 22:4402 - 4418
  • Nasmyth K, Dirick L. The role of SWI4 and SWI6 in the activity of the G1 cyclins in yeast. Cell 1991; 66:995 - 1013
  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9:3273 - 3297
  • Wittenberg C, Reed SI. Cell cycle-dependent transcription in yeast: promoters, transcription factors and transcriptomes. Oncogene 2005; 24:2746 - 2755
  • Lowndes NF, Johnson AL, Breeden L, Johnston LH. SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature 1992; 357:505 - 508
  • Stuart D, Wittenberg C. Cell cycle-dependent transcription of CLN2 is conferred by multiple distinct cis-acting regulatory elements. Mol Cell Biol 1994; 14:4788 - 4801
  • Breeden L, Mikesell G. Three independent forms of regulation affect expression of HO, CLN1 and CLN2 during the cell cycle of Saccharomyces cerevisiae. Genetics 1994; 138:1015 - 1024
  • de Bruin RA, McDonald WH, Kalashnikova TI, Yates J 3rd, Wittenberg C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 2004; 117:887 - 898
  • Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 2004; 117:899 - 913
  • Bean JM, Siggia ED, Cross FR. Coherence and timing of cell cycle start examined at single-cell resolution. Mol Cell 2006; 21:3 - 14
  • Jiao W, Datta J, Lin HM, Dundr M, Rane SG. Nucleocytoplasmic shuttling of the retinoblastoma tumor suppressor protein via Cdk phosphorylation-dependent nuclear export. J Biol Chem 2006; 281:38098 - 38108
  • Sennerstam R, Stromberg JO. A comparative study of the cell cycles of nullipotent and multipotent embryonal carcinoma cell lines during exponential growth. Dev Biol 1984; 103:221 - 229
  • Zetterberg A, Larsson O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci USA 1985; 82:5365 - 5369
  • Fox TO, Pardee AB. Animal cells: noncorrelation of length of G1 phase with size after mitosis. Science 1970; 167:80 - 82
  • Fantes P, Nurse P. Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp Cell Res 1977; 107:377 - 386
  • Koch AL, Schaechter M. A model for statistics of the cell division process. J Gen Microbiol 1962; 29:435 - 454
  • Spudich JL, Koshland DE Jr. Non-genetic individuality: chance in the single cell. Nature 1976; 262:467 - 471
  • Tyson CB, Lord PG, Wheals AE. Dependency of size of Saccharomyces cerevisiae cells on growth rate. J Bacteriol 1979; 138:92 - 98
  • Lord PG, Wheals AE. Asymmetrical division of Saccharomyces cerevisiae. J Bacteriol 1980; 142:808 - 818
  • Lord PG, Wheals AE. Variability in individual cell cycles of Saccharomyces cerevisiae. J Cell Sci 1981; 50:361 - 376
  • Lord PG, Wheals AE. Rate of cell cycle initiation of yeast cells when cell size is not a rate-determining factor. J Cell Sci 1983; 59:183 - 201
  • Gascoigne KE, Taylor SS. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008; 14:111 - 122
  • Holland AJ, Cleveland DW. Beyond genetics: surprising determinants of cell fate in antitumor drugs. Cancer Cell 2008; 14:103 - 105
  • Frescas D, Mavrakis M, Lorenz H, Delotto R, Lippincott-Schwartz J. The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J Cell Biol 2006; 173:219 - 230
  • Mavrakis M, Rikhy R, Lippincott-Schwartz J. Cells within a cell: Insights into cellular architecture and polarization from the organization of the early fly embryo. Commun Integr Biol 2009; 2:313 - 314
  • Mavrakis M, Rikhy R, Lippincott-Schwartz J. Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev Cell 2009; 16:93 - 104
  • Wendland J, Ayad-Durieux Y, Knechtle P, Rebischung C, Philippsen P. PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene 2000; 242:381 - 391
  • Sambrook J. Molecular Cloning: A Laboratory Manual 2001; Cold Spring Harbor Cold Spring Harbor Laboratory Press
  • Schmitz HP, Kaufmann A, Kohli M, Laissue PP, Philippsen P. From function to shape: a novel role of a formin in morphogenesis of the fungus Ashbya gossypii. Mol Biol Cell 2006; 17:130 - 145
  • Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 1996; 12:259 - 265
  • Kaufmann A. A plasmid collection for PCR-based gene targeting in the filamentous ascomycete Ashbya gossypii. Fungal Genet Biol 2009; 46:595 - 603
  • Helfer H, Gladfelter AS. AgSwe1p regulates mitosis in response to morphogenesis and nutrients in multinucleated Ashbya gossypii cells. Mol Biol Cell 2006; 17:4494 - 4512
  • Cliff AD, Ord JK. Spatial Autocorrelation 1973; London Pion Press
  • Moran PA. The interpretation of statistical maps. J R Stat Soc Series B Stat Methodol 1948; 10:243 - 251
  • Altmann-Johl R, Philippsen P. AgTHR4, a new selection marker for transformation of the filamentous fungus Ashbya gossypii, maps in a four-gene cluster that is conserved between A. gossypii and Saccharomyces cerevisiae. Mol Gen Genet 1996; 250:69 - 80
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989; 122:19 - 27
  • Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 2004; 304:304 - 307

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.