610
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels

, , , &
Pages 181-196 | Published online: 01 May 2012

References

  • Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med 2008; 29:290 - 308; http://dx.doi.org/10.1016/j.mam.2008.05.002; PMID: 18619669
  • Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, et al. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 2006; 26:1923 - 34; http://dx.doi.org/10.1523/JNEUROSCI.4359-05.2006; PMID: 16481424
  • Meighan PC, Meighan SE, Davis CJ, Wright JW, Harding JW. Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of schaffer collateral/CA1 synapses. J Neurochem 2007; 102:2085 - 96; http://dx.doi.org/10.1111/j.1471-4159.2007.04682.x; PMID: 17587312
  • Bilousova TV, Rusakov DA, Ethell DW, Ethell IM. Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. J Neurochem 2006; 97:44 - 56; http://dx.doi.org/10.1111/j.1471-4159.2006.03701.x; PMID: 16515559
  • Tian L, Stefanidakis M, Ning L, Van Lint P, Nyman-Huttunen H, Libert C, et al. Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J Cell Biol 2007; 178:687 - 700; http://dx.doi.org/10.1083/jcb.200612097; PMID: 17682049
  • Wang XB, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW. Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci U S A 2008; 105:19520 - 5; http://dx.doi.org/10.1073/pnas.0807248105; PMID: 19047646
  • Wójtowicz T, Mozrzymas JW. Late phase of long-term potentiation in the mossy fiber-CA3 hippocampal pathway is critically dependent on metalloproteinases activity. Hippocampus 2010; 20:917 - 21; PMID: 20572195
  • Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, et al. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 2006; 96:1227 - 41; http://dx.doi.org/10.1111/j.1471-4159.2005.03565.x; PMID: 16464240
  • Nagy V, Bozdagi O, Huntley GW. The extracellular protease matrix metalloproteinase-9 is activated by inhibitory avoidance learning and required for long-term memory. Learn Mem 2007; 14:655 - 64; http://dx.doi.org/10.1101/lm.678307; PMID: 17909100
  • Olson ML, Meighan PC, Brown TE, Asay AL, Benoist CC, Harding JW, et al. Hippocampal MMP-3 elevation is associated with passive avoidance conditioning. Regul Pept 2008; 146:19 - 25; http://dx.doi.org/10.1016/j.regpep.2007.07.004; PMID: 17698214
  • Szklarczyk A, Lapinska J, Rylski M, McKay RDG, Kaczmarek L. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 2002; 22:920 - 30; PMID: 11826121
  • Kim HJ, Fillmore HL, Reeves TM, Phillips LL. Elevation of hippocampal MMP-3 expression and activity during trauma-induced synaptogenesis. Exp Neurol 2005; 192:60 - 72; http://dx.doi.org/10.1016/j.expneurol.2004.10.014; PMID: 15698619
  • Agrawal SM, Lau L, Yong VW. MMPs in the central nervous system: where the good guys go bad. Semin Cell Dev Biol 2008; 19:42 - 51; http://dx.doi.org/10.1016/j.semcdb.2007.06.003; PMID: 17646116
  • Miller JP, Holcomb J, Al-Ramahi I, de Haro M, Gafni J, Zhang N, et al. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron 2010; 67:199 - 212; http://dx.doi.org/10.1016/j.neuron.2010.06.021; PMID: 20670829
  • Yang Y, Hill JW, Rosenberg GA. Chapter 6–multiple roles of metalloproteinases in neurological disorders. Prog Mol Biol Transl Sci 2011; 99:241–63.
  • Plantner JJ, Drew TA. Polarized distribution of metalloproteinases in the bovine interphotoreceptor matrix. Exp Eye Res 1994; 59:577 - 85; http://dx.doi.org/10.1006/exer.1994.1143; PMID: 9492759
  • Padgett LC, Lui GM, Werb Z, LaVail MM. Matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 in the retinal pigment epithelium and interphotoreceptor matrix: vectorial secretion and regulation. Exp Eye Res 1997; 64:927 - 38; http://dx.doi.org/10.1006/exer.1997.0287; PMID: 9301473
  • Smine A, Plantner JJ. Membrane type-1 matrix metalloproteinase in human ocular tissues. Curr Eye Res 1997; 16:925 - 9; http://dx.doi.org/10.1076/ceyr.16.9.925.5044; PMID: 9288454
  • Plantner JJ, Smine A, Quinn TA. Matrix metalloproteinases and metalloproteinase inhibitors in human interphotoreceptor matrix and vitreous. Curr Eye Res 1998; 17:132 - 40; http://dx.doi.org/10.1076/ceyr.17.2.132.5610; PMID: 9523090
  • Zhang X, Cheng M, Chintala SK. Kainic acid-mediated upregulation of matrix metalloproteinase-9 promotes retinal degeneration. Invest Ophthalmol Vis Sci 2004; 45:2374 - 83; http://dx.doi.org/10.1167/iovs.03-1239; PMID: 15223820
  • Mali RS, Cheng M, Chintala SK. Intravitreous injection of a membrane depolarization agent causes retinal degeneration via matrix metalloproteinase-9. Invest Ophthalmol Vis Sci 2005; 46:2125 - 32; http://dx.doi.org/10.1167/iovs.04-1376; PMID: 15914633
  • Papp AM, Nyilas R, Szepesi Z, Lőrincz ML, Takács E, Abrahám I, et al. Visible light induces matrix metalloproteinase-9 expression in rat eye. J Neurochem 2007; 103:2224 - 33; http://dx.doi.org/10.1111/j.1471-4159.2007.04917.x; PMID: 17854381
  • Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res 2002; 21:1 - 14; http://dx.doi.org/10.1016/S1350-9462(01)00015-5; PMID: 11906808
  • Majka S, McGuire P, Colombo S, Das A. The balance between proteinases and inhibitors in a murine model of proliferative retinopathy. Invest Ophthalmol Vis Sci 2001; 42:210 - 5; PMID: 11133870
  • Giebel SJ, Menicucci G, McGuire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 2005; 85:597 - 607; http://dx.doi.org/10.1038/labinvest.3700251; PMID: 15711567
  • Kowluru RA. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by H-Ras. Invest Ophthalmol Vis Sci 2010; 51:4320 - 6; http://dx.doi.org/10.1167/iovs.09-4851; PMID: 20220057
  • Plantner JJ, Jiang C, Smine A. Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration. Exp Eye Res 1998; 67:637 - 45; http://dx.doi.org/10.1006/exer.1998.0552; PMID: 9990329
  • Chen YD, Xu X, Xia X, Wu H, Liu K, Zheng Z, et al. MMP9 is involved in glycation end-products induced increase of retinal vascular permeability in rats and the therapeutic effect of minocycline. Curr Eye Res 2008; 33:977 - 83; http://dx.doi.org/10.1080/02713680802450984; PMID: 19085380
  • Macgregor AM, Eberhart CG, Fraig M, Lu J, Halushka MK. Tissue inhibitor of matrix metalloproteinase-3 levels in the extracellular matrix of lung, kidney, and eye increase with age. J Histochem Cytochem 2009; 57:207 - 13; http://dx.doi.org/10.1369/jhc.2008.952531; PMID: 18955737
  • Liutkeviciene R, Lesauskaite V, Asmoniene V, Zaliūniene D, Jasinskas V. Factors determining age-related macular degeneration: a current view. Medicina (Kaunas) 2010; 46:89 - 94; PMID: 20440081
  • Mathalone N, Lahat N, Rahat MA, Bahar-Shany K, Oron Y, Geyer O. The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia. Graefes Arch Clin Exp Ophthalmol 2007; 245:725 - 32; http://dx.doi.org/10.1007/s00417-006-0362-y; PMID: 17024442
  • Ahuja S, Ahuja P, Caffé AR, Ekstrom P, Abrahamson M, van Veen T. rd1 mouse retina shows imbalance in cellular distribution and levels of TIMP-1/MMP-9, TIMP-2/MMP-2 and sulfated glycosaminoglycans. Ophthalmic Res 2006; 38:125 - 36; http://dx.doi.org/10.1159/000090533; PMID: 16374054
  • Chintala SK. The emerging role of proteases in retinal ganglion cell death. Exp Eye Res 2006; 82:5 - 12; http://dx.doi.org/10.1016/j.exer.2005.07.013; PMID: 16185688
  • Szklarczyk A, Ewaleifoh O, Beique J-C, Wang Y, Knorr D, Haughey N, et al. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. FASEB J 2008; 22:3757 - 67; http://dx.doi.org/10.1096/fj.07-101402; PMID: 18644839
  • Pauly T, Ratliff M, Pietrowski E, Neugebauer R, Schlicksupp A, Kirsch J, et al. Activity-dependent shedding of the NMDA receptor glycine binding site by matrix metalloproteinase 3: a PUTATIVE mechanism of postsynaptic plasticity. PLoS One 2008; 3:e2681; http://dx.doi.org/10.1371/journal.pone.0002681; PMID: 18629001
  • Rangaraju S, Khoo KK, Feng Z-P, Crossley G, Nugent D, Khaytin I, et al. Potassium channel modulation by a toxin domain in matrix metalloprotease 23. J Biol Chem 2010; 285:9124 - 36; http://dx.doi.org/10.1074/jbc.M109.071266; PMID: 19965868
  • Craven KB, Zagotta WN. CNG and HCN channels: two peas, one pod. Annu Rev Physiol 2006; 68:375 - 401; http://dx.doi.org/10.1146/annurev.physiol.68.040104.134728; PMID: 16460277
  • Pifferi S, Boccaccio A, Menini A. Cyclic nucleotide-gated ion channels in sensory transduction. FEBS Lett 2006; 580:2853 - 9; http://dx.doi.org/10.1016/j.febslet.2006.03.086; PMID: 16631748
  • Garcia-Caballero A, Ishmael SS, Dang Y, Gillie D, Bond JS, Milgram SL, et al. Activation of the epithelial sodium channel by the metalloprotease meprin β subunit. Channels (Austin) 2011; 5:14 - 22; http://dx.doi.org/10.4161/chan.5.1.13759; PMID: 20953144
  • Bright SR, Rich ED, Varnum MD. Regulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3,4,5-trisphosphate. Mol Pharmacol 2007; 71:176 - 83; http://dx.doi.org/10.1124/mol.106.026401; PMID: 17018579
  • Okada Y, Nagase H, Harris ED Jr.. A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J Biol Chem 1986; 261:14245 - 55; PMID: 3095317
  • Michaluk P, Mikasova L, Groc L, Frischknecht R, Choquet D, Kaczmarek L. Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin beta1 signaling. J Neurosci 2009; 29:6007 - 12; http://dx.doi.org/10.1523/JNEUROSCI.5346-08.2009; PMID: 19420267
  • Conant K, Lonskaya I, Szklarczyk A, Krall C, Steiner J, Maguire-Zeiss K, et al. Methamphetamine-associated cleavage of the synaptic adhesion molecule intercellular adhesion molecule-5. J Neurochem . 2011; 118:521 - 32; http://dx.doi.org/10.1111/j.1471-4159.2010.07153.x; PMID: 21166806
  • Puente XS, Sánchez LM, Overall CM, López-Otín C. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 2003; 4:544 - 58; http://dx.doi.org/10.1038/nrg1111; PMID: 12838346
  • Liu C, Varnum MD. Functional consequences of progressive cone dystrophy-associated mutations in the human cone photoreceptor cyclic nucleotide-gated channel CNGA3 subunit. Am J Physiol Cell Physiol 2005; 289:C187 - 98; http://dx.doi.org/10.1152/ajpcell.00490.2004; PMID: 15743887
  • Faillace MP, Bernabeu RO, Korenbrot JI. Cellular processing of cone photoreceptor cyclic GMP-gated ion channels: a role for the S4 structural motif. J Biol Chem 2004; 279:22643 - 53; http://dx.doi.org/10.1074/jbc.M400035200; PMID: 15024024
  • Pugh EN Jr., Lamb TD. Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1993; 1141:111 - 49; http://dx.doi.org/10.1016/0005-2728(93)90038-H; PMID: 8382952
  • Kaupp UB, Niidome T, Tanabe T, Terada S, Bönigk W, Stühmer W, et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 1989; 342:762 - 6; http://dx.doi.org/10.1038/342762a0; PMID: 2481236
  • Chen TY, Peng YW, Dhallan RS, Ahamed B, Reed RR, Yau KW. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 1993; 362:764 - 7; http://dx.doi.org/10.1038/362764a0; PMID: 7682292
  • Chen TY, Illing M, Molday LL, Hsu YT, Yau KW, Molday RS. Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca(2+)-calmodulin modulation. Proc Natl Acad Sci U S A 1994; 91:11757 - 61; http://dx.doi.org/10.1073/pnas.91.24.11757; PMID: 7526403
  • Körschen HG, Illing M, Seifert R, Sesti F, Williams A, Gotzes S, et al. A 240 kDa protein represents the complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron 1995; 15:627 - 36; http://dx.doi.org/10.1016/0896-6273(95)90151-5; PMID: 7546742
  • Molokanova E, Trivedi B, Savchenko A, Kramer RH. Modulation of rod photoreceptor cyclic nucleotide-gated channels by tyrosine phosphorylation. J Neurosci 1997; 17:9068 - 76; PMID: 9364053
  • Gerstner A, Zong X, Hofmann F, Biel M. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J Neurosci 2000; 20:1324 - 32; PMID: 10662822
  • Zhong H, Molday LL, Molday RS, Yau K-W. The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 2002; 420:193 - 8; http://dx.doi.org/10.1038/nature01201; PMID: 12432397
  • Weitz D, Ficek N, Kremmer E, Bauer PJ, Kaupp UB. Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 2002; 36:881 - 9; http://dx.doi.org/10.1016/S0896-6273(02)01098-X; PMID: 12467591
  • Zheng J, Trudeau MC, Zagotta WN. Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 2002; 36:891 - 6; http://dx.doi.org/10.1016/S0896-6273(02)01099-1; PMID: 12467592
  • Peng C, Rich ED, Varnum MD. Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron 2004; 42:401 - 10; http://dx.doi.org/10.1016/S0896-6273(04)00225-9; PMID: 15134637
  • Haynes LW, Kay AR, Yau KW. Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 1986; 321:66 - 70; http://dx.doi.org/10.1038/321066a0; PMID: 2422558
  • Newman KM, Ogata Y, Malon AM, Irizarry E, Gandhi RH, Nagase H, et al. Identification of matrix metalloproteinases 3 (stromelysin-1) and 9 (gelatinase B) in abdominal aortic aneurysm. Arterioscler Thromb 1994; 14:1315 - 20; http://dx.doi.org/10.1161/01.ATV.14.8.1315; PMID: 8049193
  • Woessner JF, Nagase H. Matrix Metalloproteinases and TIMPs. 2nd ed. Oxford University Press, USA; 2000.
  • Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST. Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 2010; 166:508 - 21; http://dx.doi.org/10.1016/j.neuroscience.2009.12.061; PMID: 20045450
  • Molokanova E, Maddox F, Luetje CW, Kramer RH. Activity-dependent modulation of rod photoreceptor cyclic nucleotide-gated channels mediated by phosphorylation of a specific tyrosine residue. J Neurosci 1999; 19:4786 - 95; PMID: 10366613
  • Gordon SE, Oakley JC, Varnum MD, Zagotta WN. Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels. Biochemistry 1996; 35:3994 - 4001; http://dx.doi.org/10.1021/bi952607b; PMID: 8672432
  • Ruiz M, Brown RL, He Y, Haley TL, Karpen JW. The single-channel dose-response relation is consistently steep for rod cyclic nucleotide-gated channels: implications for the interpretation of macroscopic dose-response relations. Biochemistry 1999; 38:10642 - 8; http://dx.doi.org/10.1021/bi990532w; PMID: 10451358
  • Kleyman TR, Carattino MD, Hughey RP. ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 2009; 284:20447 - 51; http://dx.doi.org/10.1074/jbc.R800083200; PMID: 19401469
  • Kitamura K, Tomita K. Regulation of renal sodium handling through the interaction between serine proteases and serine protease inhibitors. Clin Exp Nephrol 2010; 14:405 - 10; http://dx.doi.org/10.1007/s10157-010-0299-7; PMID: 20535627
  • Jones BE, Moshyedi P, Gallo S, Tombran-Tink J, Arand G, Reid DA, et al. Characterization and novel activation of 72-kDa metalloproteinase in retinal interphotoreceptor matrix and Y-79 cell culture medium. Exp Eye Res 1994; 59:257 - 69; http://dx.doi.org/10.1006/exer.1994.1107; PMID: 7821370
  • Ko GY, Ko ML, Dryer SE. Developmental expression of retinal cone cGMP-gated channels: evidence for rapid turnover and trophic regulation. J Neurosci 2001; 21:221 - 9; PMID: 11150339
  • Ko GY-P, Ko ML, Dryer SE. Circadian Regulation of cGMP-Gated Cationic Channels of Chick Retinal Cones. Neuron 2001; 29:255 - 66; http://dx.doi.org/10.1016/S0896-6273(01)00195-7; PMID: 11182096
  • Paquet-Durand F, Beck S, Michalakis S, Goldmann T, Huber G, Mühlfriedel R, et al. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum Mol Genet 2011; 20:941 - 7; http://dx.doi.org/10.1093/hmg/ddq539; PMID: 21149284
  • Huang SH, Pittler SJ, Huang X, Oliveira L, Berson EL, Dryja TP. Autosomal recessive retinitis pigmentosa caused by mutations in the alpha subunit of rod cGMP phosphodiesterase. Nat Genet 1995; 11:468 - 71; http://dx.doi.org/10.1038/ng1295-468; PMID: 7493036
  • Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, et al. A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 1998; 7:273 - 7; http://dx.doi.org/10.1093/hmg/7.2.273; PMID: 9425234
  • Biel M, Michalakis S. Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol Neurobiol 2007; 35:266 - 77; http://dx.doi.org/10.1007/s12035-007-0025-y; PMID: 17917115
  • Fox DA, Poblenz AT, He L. Calcium overload triggers rod photoreceptor apoptotic cell death in chemical-induced and inherited retinal degenerations. Ann N Y Acad Sci 1999; 893:282 - 5; http://dx.doi.org/10.1111/j.1749-6632.1999.tb07837.x; PMID: 10672249
  • Yu W-P, Grunwald ME, Yau K-W. Molecular cloning, functional expression and chromosomal localization of a human homolog of the cyclic nucleotide-gated ion channel of retinal cone photoreceptors. FEBS Lett 1996; 393:211 - 5; http://dx.doi.org/10.1016/0014-5793(96)00889-7; PMID: 8814292
  • Peng C, Rich ED, Thor CA, Varnum MD. Functionally important calmodulin-binding sites in both NH2- and COOH-terminal regions of the cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit. J Biol Chem 2003; 278:24617 - 23; http://dx.doi.org/10.1074/jbc.M301699200; PMID: 12730238
  • Schoenmakers TJ, Visser GJ, Flik G, Theuvenet AP. CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. Biotechniques 1992; 12:870 - 4, 876-9; PMID: 1642895
  • Gordon SE, Zagotta WN. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron 1995; 14:857 - 64; http://dx.doi.org/10.1016/0896-6273(95)90229-5; PMID: 7536427
  • Varnum MD, Black KD, Zagotta WN. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 1995; 15:619 - 25; http://dx.doi.org/10.1016/0896-6273(95)90150-7; PMID: 7546741
  • Fodor AA, Gordon SE, Zagotta WN. Mechanism of tetracaine block of cyclic nucleotide-gated channels. J Gen Physiol 1997; 109:3 - 14; http://dx.doi.org/10.1085/jgp.109.1.3; PMID: 8997661
  • Li J, Zagotta WN, Lester HA. Cyclic nucleotide-gated channels: structural basis of ligand efficacy and allosteric modulation. Q Rev Biophys 1997; 30:177 - 93; http://dx.doi.org/10.1017/S0033583597003326; PMID: 9293605
  • Molday RS, Molday LL, Dosé A, Clark-Lewis I, Illing M, Cook NJ, et al. The cGMP-gated channel of the rod photoreceptor cell characterization and orientation of the amino terminus. J Biol Chem 1991; 266:21917 - 22; PMID: 1718987
  • Holm S. A simple sequentially rejective multiple test proceedure. Scand J Stat 1979; 6:65 - 70
  • Sakmann B, Neher E. Single-Channel Recording. 2nd ed. Springer; 1995.