1,687
Views
28
CrossRef citations to date
0
Altmetric
Review

The roles of G proteins in the activation of TRPC4 and TRPC5 transient receptor potential channels

, , , , , , , & show all
Pages 333-343 | Received 23 May 2012, Accepted 20 Jun 2012, Published online: 10 Aug 2012

References

  • Clapham DE, Runnels LW, Strübing C. The TRP ion channel family. Nat Rev Neurosci 2001; 2:387 - 96; http://dx.doi.org/10.1038/35077544; PMID: 11389472
  • Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 2010; 62:381 - 404; http://dx.doi.org/10.1124/pr.110.002725; PMID: 20716668
  • Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol 2011; 12:218; http://dx.doi.org/10.1186/gb-2011-12-3-218; PMID: 21401968
  • Nilius B, Owsianik G. Transient receptor potential channelopathies. Pflugers Arch 2010; 460:437 - 50; http://dx.doi.org/10.1007/s00424-010-0788-2; PMID: 20127491
  • Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, et al. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 1998; 273:10279 - 87; http://dx.doi.org/10.1074/jbc.273.17.10279; PMID: 9553080
  • Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 2000; 275:17517 - 26; http://dx.doi.org/10.1074/jbc.275.23.17517; PMID: 10837492
  • Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, et al. TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 2003; 284:G604 - 16; PMID: 12631560
  • Kang TM, Kim YC, Sim JH, Rhee JC, Kim SJ, Uhm DY, et al. The properties of carbachol-activated nonselective cation channels at the single channel level in guinea pig gastric myocytes. Jpn J Pharmacol 2001; 85:291 - 8; http://dx.doi.org/10.1254/jjp.85.291; PMID: 11325022
  • Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 2001; 29:645 - 55; http://dx.doi.org/10.1016/S0896-6273(01)00240-9; PMID: 11301024
  • Kim MJ, Jeon JP, Kim HJ, Kim BJ, Lee YM, Choe H, et al. Molecular determinant of sensing extracellular pH in classical transient receptor potential channel 5. Biochem Biophys Res Commun 2008; 365:239 - 45; http://dx.doi.org/10.1016/j.bbrc.2007.10.154; PMID: 17981154
  • Hong C, Kim J, Jeon JP, Wie J, Kwak M, Ha K, et al. Gs cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca2+ release and ion channel trafficking. Biochem Biophys Res Commun 2012; 421:105 - 11; http://dx.doi.org/10.1016/j.bbrc.2012.03.123; PMID: 22490661
  • Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, et al. TRPC channel activation by extracellular thioredoxin. Nature 2008; 451:69 - 72; http://dx.doi.org/10.1038/nature06414; PMID: 18172497
  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2006; 2:596 - 607; http://dx.doi.org/10.1038/nchembio821; PMID: 16998480
  • Sukumar P, Beech DJ. Stimulation of TRPC5 cationic channels by low micromolar concentrations of lead ions (Pb2+). Biochem Biophys Res Commun 2010; 393:50 - 4; http://dx.doi.org/10.1016/j.bbrc.2010.01.074; PMID: 20100462
  • Xu SZ, Zeng B, Daskoulidou N, Chen GL, Atkin SL, Lukhele B. Activation of TRPC cationic channels by mercurial compounds confers the cytotoxicity of mercury exposure. Toxicol Sci 2012; 125:56 - 68; http://dx.doi.org/10.1093/toxsci/kfr268; PMID: 21984481
  • Flemming PK, Dedman AM, Xu SZ, Li J, Zeng F, Naylor J, et al. Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 2006; 281:4977 - 82; http://dx.doi.org/10.1074/jbc.M510301200; PMID: 16368680
  • Al-Shawaf E, Naylor J, Taylor H, Riches K, Milligan CJ, O’Regan D, et al. Short-term stimulation of calcium-permeable transient receptor potential canonical 5-containing channels by oxidized phospholipids. Arterioscler Thromb Vasc Biol 2010; 30:1453 - 9; http://dx.doi.org/10.1161/ATVBAHA.110.205666; PMID: 20378846
  • Obukhov AG, Nowycky MC. TRPC5 channels undergo changes in gating properties during the activation-deactivation cycle. J Cell Physiol 2008; 216:162 - 71; http://dx.doi.org/10.1002/jcp.21388; PMID: 18247362
  • Venkatachalam K, Zheng F, Gill DL. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 2003; 278:29031 - 40; http://dx.doi.org/10.1074/jbc.M302751200; PMID: 12721302
  • Zhu MH, Chae M, Kim HJ, Lee YM, Kim MJ, Jin NG, et al. Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am J Physiol Cell Physiol 2005; 289:C591 - 600; http://dx.doi.org/10.1152/ajpcell.00440.2004; PMID: 15843439
  • Wang X, Pluznick JL, Settles DC, Sansom SC. Association of VASP with TRPC4 in PKG-mediated inhibition of the store-operated calcium response in mesangial cells. Am J Physiol Renal Physiol 2007; 293:F1768 - 76; http://dx.doi.org/10.1152/ajprenal.00365.2007; PMID: 17913834
  • Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 2004; 6:709 - 20; http://dx.doi.org/10.1038/ncb1150; PMID: 15258588
  • Kim MT, Kim BJ, Lee JH, Kwon SC, Yeon DS, Yang DK, et al. Involvement of calmodulin and myosin light chain kinase in activation of mTRPC5 expressed in HEK cells. Am J Physiol Cell Physiol 2006; 290:C1031 - 40; http://dx.doi.org/10.1152/ajpcell.00602.2004; PMID: 16306123
  • Ordaz B, Tang J, Xiao R, Salgado A, Sampieri A, Zhu MX, et al. Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. J Biol Chem 2005; 280:30788 - 96; http://dx.doi.org/10.1074/jbc.M504745200; PMID: 15987684
  • Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, et al. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem 2000; 275:37559 - 64; http://dx.doi.org/10.1074/jbc.M006635200; PMID: 10980202
  • Mery L, Strauss B, Dufour JF, Krause KH, Hoth M. The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 2002; 115:3497 - 508; PMID: 12154080
  • Obukhov AG, Nowycky MC. TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50). J Cell Physiol 2004; 201:227 - 35; http://dx.doi.org/10.1002/jcp.20057; PMID: 15334657
  • Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 2001; 3:121 - 7; http://dx.doi.org/10.1038/35055019; PMID: 11175743
  • Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, et al. Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res 2002; 91:70 - 6; http://dx.doi.org/10.1161/01.RES.0000023391.40106.A8; PMID: 12114324
  • Sánchez-González P, Jellali K, Villalobo A. Calmodulin-mediated regulation of the epidermal growth factor receptor. FEBS J 2010; 277:327 - 42; http://dx.doi.org/10.1111/j.1742-4658.2009.07469.x; PMID: 19951361
  • Yang H, Mergler S, Sun X, Wang Z, Lu L, Bonanno JA, et al. TRPC4 knockdown suppresses epidermal growth factor-induced store-operated channel activation and growth in human corneal epithelial cells. J Biol Chem 2005; 280:32230 - 7; http://dx.doi.org/10.1074/jbc.M504553200; PMID: 16033767
  • Odell AF, Scott JL, Van Helden DF. Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 2005; 280:37974 - 87; http://dx.doi.org/10.1074/jbc.M503646200; PMID: 16144838
  • Odell AF, Van Helden DF, Scott JL. The spectrin cytoskeleton influences the surface expression and activation of human transient receptor potential channel 4 channels. J Biol Chem 2008; 283:4395 - 407; http://dx.doi.org/10.1074/jbc.M709729200; PMID: 18048348
  • Jeon JP, Hong C, Park EJ, Jeon JH, Cho NH, Kim IG, et al. Selective Gαi subunits as novel direct activators of TRPC4 and TRPC5 channels. J Biol Chem 2012; 287:17029 - 39; http://dx.doi.org/10.1074/jbc.M111.326553; PMID: 22457348
  • Wegierski T, Hill K, Schaefer M, Walz G. The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 2006; 25:5659 - 69; http://dx.doi.org/10.1038/sj.emboj.7601429; PMID: 17110928
  • Jeon JP, Lee KP, Park EJ, Sung TS, Kim BJ, Jeon JH, et al. The specific activation of TRPC4 by Gi protein subtype. Biochem Biophys Res Commun 2008; 377:538 - 43; http://dx.doi.org/10.1016/j.bbrc.2008.10.012; PMID: 18854172
  • Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, et al. Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2008; 283:10026 - 36; http://dx.doi.org/10.1074/jbc.M707306200; PMID: 18230622
  • Kim BJ, Kim MT, Jeon JH, Kim SJ, So I. Involvement of phosphatidylinositol 4,5-bisphosphate in the desensitization of canonical transient receptor potential 5. Biol Pharm Bull 2008; 31:1733 - 8; http://dx.doi.org/10.1248/bpb.31.1733; PMID: 18758068
  • Sung TS, Jeon JP, Kim BJ, Hong C, Kim SY, Kim J, et al. Molecular determinants of PKA-dependent inhibition of TRPC5 channel. Am J Physiol Cell Physiol 2011; 301:C823 - 32; http://dx.doi.org/10.1152/ajpcell.00351.2010; PMID: 21734191
  • Zhang S, Remillard CV, Fantozzi I, Yuan JX. ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 2004; 287:C1192 - 201; http://dx.doi.org/10.1152/ajpcell.00158.2004; PMID: 15229105
  • Blair NT, Kaczmarek JS, Clapham DE. Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol 2009; 133:525 - 46; http://dx.doi.org/10.1085/jgp.200810153; PMID: 19398778
  • Gross SA, Guzmán GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, et al. TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J Biol Chem 2009; 284:34423 - 32; http://dx.doi.org/10.1074/jbc.M109.018192; PMID: 19815560
  • Cao C, Huang X, Han Y, Wan Y, Birnbaumer L, Feng GS, et al. Galpha(i1) and Galpha(i3) are required for epidermal growth factor-mediated activation of the Akt-mTORC1 pathway. Sci Signal 2009; 2:ra17; http://dx.doi.org/10.1126/scisignal.2000118; PMID: 19401591
  • Bolton TB, Prestwich SA, Zholos AV, Gordienko DV. Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol 1999; 61:85 - 115; http://dx.doi.org/10.1146/annurev.physiol.61.1.85; PMID: 10099683
  • Unno T, Matsuyama H, Okamoto H, Sakamoto T, Yamamoto M, Tanahashi Y, et al. Muscarinic cationic current in gastrointestinal smooth muscles: signal transduction and role in contraction. Auton Autacoid Pharmacol 2006; 26:203 - 17; http://dx.doi.org/10.1111/j.1474-8673.2006.00366.x; PMID: 16879487
  • Kim BJ, So I, Kim KW. The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract. J Smooth Muscle Res 2006; 42:1 - 7; http://dx.doi.org/10.1540/jsmr.42.1; PMID: 16702759
  • Inoue R, Isenberg G. Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. Am J Physiol 1990; 258:C1173 - 8; PMID: 1694399
  • Zholos AV, Bolton TB. Muscarinic receptor subtypes controlling the cationic current in guinea-pig ileal smooth muscle. Br J Pharmacol 1997; 122:885 - 93; http://dx.doi.org/10.1038/sj.bjp.0701438; PMID: 9384504
  • Kim SJ, Ahn SC, So I, Kim KW. Quinidine blockade of the carbachol-activated nonselective cationic current in guinea-pig gastric myocytes. Br J Pharmacol 1995; 115:1407 - 14; PMID: 8564199
  • Kim SJ, Ahn SC, So I, Kim KW. Role of calmodulin in the activation of carbachol-activated cationic current in guinea-pig gastric antral myocytes. Pflugers Arch 1995; 430:757 - 62; http://dx.doi.org/10.1007/BF00386173; PMID: 7478930
  • Kim YC, Kim SJ, Sim JH, Jun JY, Kang TM, Suh SH, et al. Protein kinase C mediates the desensitization of CCh-activated nonselective cationic current in guinea-pig gastric myocytes. Pflugers Arch 1998; 436:1 - 8; http://dx.doi.org/10.1007/s004240050597; PMID: 9560440
  • Kim YC, Kim SJ, Sim JH, Cho CH, Juhnn YS, Suh SH, et al. Suppression of the carbachol-activated nonselective cationic current by antibody against alpha subunit of Go protein in guinea-pig gastric myocytes. Pflugers Arch 1998; 436:494 - 6; http://dx.doi.org/10.1007/s004240050663; PMID: 9644236
  • Kim SJ, Koh EM, Kang TM, Kim YC, So I, Isenberg G, et al. Ca2+ influx through carbachol-activated non-selective cation channels in guinea-pig gastric myocytes. J Physiol 1998; 513:749 - 60; http://dx.doi.org/10.1111/j.1469-7793.1998.749ba.x; PMID: 9824715
  • Beech DJ, Muraki K, Flemming R. Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 2004; 559:685 - 706; PMID: 15272031
  • Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem 2007; 76:387 - 417; http://dx.doi.org/10.1146/annurev.biochem.75.103004.142819; PMID: 17579562
  • Plant TD, Schaefer M. TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium 2003; 33:441 - 50; http://dx.doi.org/10.1016/S0143-4160(03)00055-1; PMID: 12765689
  • Zholos AV, Zholos AA, Bolton TB. G-protein-gated TRP-like cationic channel activated by muscarinic receptors: effect of potential on single-channel gating. J Gen Physiol 2004; 123:581 - 98; http://dx.doi.org/10.1085/jgp.200309002; PMID: 15111646
  • Lee KP, Jun JY, Chang IY, Suh SH, So I, Kim KW. TRPC4 is an essential component of the nonselective cation channel activated by muscarinic stimulation in mouse visceral smooth muscle cells. Mol Cells 2005; 20:435 - 41; PMID: 16404161
  • Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, et al. Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 2009; 137:1415 - 24; http://dx.doi.org/10.1053/j.gastro.2009.06.046; PMID: 19549525
  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999; 397:259 - 63; http://dx.doi.org/10.1038/16711; PMID: 9930701
  • Kenton M. Sanders, Mei Hong Zhu, Fiona Britton, Sang Don Koh and Sean M.Ward. Anoctamins and gastrointestinal smooth muscle excitability. Exp Physiol 2012;97.2:200–206, 2012.
  • Ward SM, Beckett EAH, Wang X-Y, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci 2000; 20:1393 - 403; PMID: 10662830
  • Sanders KM, Hwang SJ, Ward SM. Neuroeffector apparatus in gastrointestinal smooth muscle organs. J Physiol 2010; 588:4621 - 39; http://dx.doi.org/10.1113/jphysiol.2010.196030; PMID: 20921202
  • Zhu MH, Sung IK, Zheng H, Sung TS, Britton FC, O’Driscoll K, et al. Muscarinic activation of Ca2+-activated Cl- current in interstitial cells of Cajal. J Physiol 2011; 589:4565 - 82; PMID: 21768263
  • Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, et al. A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 2009; 587:4905 - 18; http://dx.doi.org/10.1113/jphysiol.2009.176206; PMID: 19703958
  • Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, et al. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 2009; 587:4887 - 904; http://dx.doi.org/10.1113/jphysiol.2009.176198; PMID: 19687122
  • Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, et al. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 2001; 97:1679 - 84; http://dx.doi.org/10.1182/blood.V97.6.1679; PMID: 11238107
  • Lampugnani MG, Dejana E. Interendothelial junctions: structure, signalling and functional roles. Curr Opin Cell Biol 1997; 9:674 - 82; http://dx.doi.org/10.1016/S0955-0674(97)80121-4; PMID: 9330871
  • Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM. Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 2009; 335:17 - 25; http://dx.doi.org/10.1007/s00441-008-0694-5; PMID: 18855014
  • Navarro P, Caveda L, Breviario F, Mândoteanu I, Lampugnani MG, Dejana E. Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 1995; 270:30965 - 72; http://dx.doi.org/10.1074/jbc.270.52.30965; PMID: 8537353
  • Vestweber D. Molecular mechanisms that control endothelial cell contacts. J Pathol 2000; 190:281 - 91; http://dx.doi.org/10.1002/(SICI)1096-9896(200002)190:3<281::AID-PATH527>3.0.CO;2-Z; PMID: 10685062
  • Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 2008; 28:223 - 32; http://dx.doi.org/10.1161/ATVBAHA.107.158014; PMID: 18162609
  • Gonzalez-Cobos JC, Trebak M. TRPC channels in smooth muscle cells. Front Biosci 2010; 15:1023 - 39; http://dx.doi.org/10.2741/3660; PMID: 20515740
  • Wakabayashi I, Poteser M, Groschner K. Intracellular pH as a determinant of vascular smooth muscle function. J Vasc Res 2006; 43:238 - 50; http://dx.doi.org/10.1159/000091235; PMID: 16449818
  • Cioffi DL, Stevens T. Regulation of endothelial cell barrier function by store-operated calcium entry. Microcirculation 2006; 13:709 - 23; http://dx.doi.org/10.1080/10739680600930354; PMID: 17085429
  • Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M. Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 2008; 103:1289 - 99; http://dx.doi.org/10.1161/01.RES.0000338496.95579.56; PMID: 18845811
  • Graziani A, Poteser M, Heupel WM, Schleifer H, Krenn M, Drenckhahn D, et al. Cell-cell contact formation governs Ca2+ signaling by TRPC4 in the vascular endothelium: evidence for a regulatory TRPC4-beta-catenin interaction. J Biol Chem 2010; 285:4213 - 23; http://dx.doi.org/10.1074/jbc.M109.060301; PMID: 19996314
  • Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, et al. Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 2001; 15:1727 - 38; http://dx.doi.org/10.1096/fj.01-0108com; PMID: 11481220
  • Hofmann T, Schaefer M, Schultz G, Gudermann T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 2002; 99:7461 - 6; http://dx.doi.org/10.1073/pnas.102596199; PMID: 12032305
  • Cioffi DL, Wu S, Alexeyev M, Goodman SR, Zhu MX, Stevens T. Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 2005; 97:1164 - 72; http://dx.doi.org/10.1161/01.RES.0000193597.65217.00; PMID: 16254212
  • Wu S, Sangerman J, Li M, Brough GH, Goodman SR, Stevens T. Essential control of an endothelial cell ISOC by the spectrin membrane skeleton. J Cell Biol 2001; 154:1225 - 33; http://dx.doi.org/10.1083/jcb.200106156; PMID: 11564759
  • Wu S, Cioffi EA, Alvarez D, Sayner SL, Chen H, Cioffi DL, et al. Essential role of a Ca2+-selective, store-operated current (ISOC) in endothelial cell permeability: determinants of the vascular leak site. Circ Res 2005; 96:856 - 63; http://dx.doi.org/10.1161/01.RES.0000163632.67282.1f; PMID: 15790951
  • Wu S, Chen H, Alexeyev MF, King JA, Moore TM, Stevens T, et al. Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability. J Biol Chem 2007; 282:34801 - 8; http://dx.doi.org/10.1074/jbc.M704522200; PMID: 17921144
  • Fasolato C, Nilius B. Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch 1998; 436:69 - 74; http://dx.doi.org/10.1007/s004240050605; PMID: 9560448
  • Fierro L, Lund PE, Parekh AB. Comparison of the activation of the Ca2+ release-activated Ca2+ current ICRAC to InsP3 in Jurkat T-lymphocytes, pulmonary artery endothelia and RBL-1 cells. Pflugers Arch 2000; 440:580 - 7; http://dx.doi.org/10.1007/s004240000336; PMID: 10958342
  • Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M. Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 2008; 103:1289 - 99; http://dx.doi.org/10.1161/01.RES.0000338496.95579.56; PMID: 18845811
  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312:1220 - 3; http://dx.doi.org/10.1126/science.1127883; PMID: 16645049
  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441:179 - 85; http://dx.doi.org/10.1038/nature04702; PMID: 16582901
  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, et al. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 2006; 103:9357 - 62; http://dx.doi.org/10.1073/pnas.0603161103; PMID: 16751269
  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG. Orai1 is an essential pore subunit of the CRAC channel. Nature 2006; 443:230 - 3; http://dx.doi.org/10.1038/nature05122; PMID: 16921383
  • Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 2006; 16:2073 - 9; http://dx.doi.org/10.1016/j.cub.2006.08.085; PMID: 16978865
  • Li J, Cubbon RM, Wilson LA, Amer MS, McKeown L, Hou B, et al. Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ Res 2011; 108:1190 - 8; http://dx.doi.org/10.1161/CIRCRESAHA.111.243352; PMID: 21441136
  • Cioffi DL, Barry C, Stevens T. Store-operated calcium entry channels in pulmonary endothelium: the emerging story of TRPCS and Orai1. Adv Exp Med Biol 2010; 661:137 - 54; http://dx.doi.org/10.1007/978-1-60761-500-2_9; PMID: 20204728
  • Sundivakkam PC, Freichel M, Singh V, Yuan JP, Vogel SM, Flockerzi V, et al. The Ca(2+) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 2012; 81:510 - 26; http://dx.doi.org/10.1124/mol.111.074658; PMID: 22210847
  • Cioffi DL, Wu S, Chen H, Alexeyev M, St Croix CM, Pitt BR, Uhlig S, Stevens T. Orai1 Determines Calcium Selectivity of an Endogenous TRPC Heterotetramer Channel. Circ Res. 2012 Apr 24. [Epub ahead of print] PubMed PMID: 22534489.
  • Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, et al. STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 2008; 32:439 - 48; http://dx.doi.org/10.1016/j.molcel.2008.09.020; PMID: 18995841
  • Pani B, Singh BB. Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 2009; 45:625 - 33; http://dx.doi.org/10.1016/j.ceca.2009.02.009; PMID: 19324409
  • Zylbergold P, Ramakrishnan N, Hebert T. The role of G proteins in assembly and function of Kir3 inwardly rectifying potassium channels. Channels (Austin) 2010; 4:411 - 21; http://dx.doi.org/10.4161/chan.4.5.13327; PMID: 20855978