704
Views
21
CrossRef citations to date
0
Altmetric
Mini Review

Left-right patterning in the C. elegans embryo

Unique mechanisms and common principles

Pages 34-40 | Received 05 Nov 2010, Accepted 05 Nov 2010, Published online: 01 Jan 2011

References

  • Brown NA, Wolpert L. The development of handedness in left/right asymmetry. Development 1990; 109:1 - 9
  • Levin M, Mercola M. The compulsion of chirality: toward an understanding of left-right asymmetry. Genes Dev 1998; 12:763 - 769
  • Wood WB. The left-right polarity puzzle: determining embryonic handedness. PLoS Biol 2005; 3:292
  • Cintas P. Chirality of living systems: a helping hand from crystals and oligopeptides. Angew Chem Int Ed Engl 2002; 41:1139 - 1145
  • Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 2005; 122:3 - 25
  • Okumura T, Utsuno H, Kuroda J, Gittenberger E, Asami T, Matsuno K. The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails. Dev Dyn 2008; 237:3497 - 3515
  • Wood WB. Handed asymmetry in nematodes. Semin Cell Dev Biol 1998; 9:53 - 60
  • Asami T, Gittenberger E, Falkner G. Whole-body enantiomorphy and maternal inheritance of chiral reversal in the pond snail Lymnaea stagnalis. J Hered 2008; 99:552 - 557
  • Dongen SV. Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J Evol Biol 2006; 19:1727 - 1743
  • Mercola M, Levin M. Left-right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol 2001; 17:779 - 805
  • Wood WB. Evidence from reversal of handedness in C. elegans embryos for early cell interactions determining cell fates. Nature 1991; 349:536 - 538
  • McManus C. Reversed bodies, reversed brains and (some) reversed behaviors: of zebrafish and men. Dev Cell 2005; 8:796 - 797
  • Sutherland MJ, Ware SM. Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet 2009; 151:307 - 317
  • Tamura K, Yonei-Tamura S, Izpisua Belmonte JC. Molecular basis of left-right asymmetry. Dev Growth Differ 1999; 41:645 - 656
  • Yost HJ. Coordinating the development of bilateral symmetry and left-right asymmetry. Semin Cell Dev Biol 2009; 20:455
  • Crampton H. Reversal of cleavage in a sinistral gastropod. Ann NY Acad Sci 1894; 8:167 - 170
  • Kuroda R, Endo B, Abe M, Shimizu M. Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature 2009; 462:790 - 794
  • Palmer AR. Symmetry breaking and the evolution of development. Science 2004; 306:828 - 833
  • Speder P, Petzoldt A, Suzanne M, Noselli S. Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr Opin Genet Dev 2007; 17:351 - 358
  • Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, von Ehrenstein G. Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 1978; 75:376 - 380
  • Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983; 100:64 - 119
  • Wood WB, Bergmann D, Florance A. Maternal effect of low temperature on handedness determination in C. elegans embryos. Dev Genet 1996; 19:222 - 230
  • Steiner G. Opuscula miscellanea nematologica, IV. Proc Heminthol Soc Wash 1936; 2:74 - 80
  • Felix MA, Sternberg PW, De Ley P. Sinistral nematode population. Nature 1996; 381:122
  • Sturtevant AH. Inheritance of the direction of coiling in Limnea. Science 1923; 58:269 - 270
  • Shibazaki Y, Shimizu M, Kuroda R. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr Biol 2004; 14:1462 - 1467
  • Goldstein B, Macara IG. The PAR proteins: fundamental players in animal cell polarization. Dev Cell 2007; 13:609 - 622
  • Willard FS, Kimple RJ, Siderovski DP. Return of the GDI: the GoLoco motif in cell division. Annu Rev Biochem 2004; 73:925 - 951
  • Bergmann DC, Lee M, Robertson B, Tsou MF, Rose LS, Wood WB. Embryonic handedness choice in C. elegans involves the Galpha protein GPA-16. Development 2003; 130:5731 - 5740
  • Afshar K, Willard FS, Colombo K, Johnston CA, McCudden CR, Siderovski DP, Gonczy P. RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division of C. elegans embryos. Cell 2004; 119:219 - 230
  • Afshar K, Willard FS, Colombo K, Siderovski DP, Gonczy P. Cortical localization of the Galpha protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division. Development 2005; 132:4449 - 4459
  • Johnston CA, Afshar K, Snyder JT, Tall GG, Gonczy P, Siderovski DP, Willard FS. Structural determinants underlying the temperature-sensitive nature of a Galpha mutant in asymmetric cell division of Caenorhabditis elegans. J Biol Chem 2008; 283:21550 - 21558
  • Kozlowski C, Srayko M, Nedelec F. Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 2007; 129:499 - 510
  • Minc N, Bratman SV, Basu R, Chang F. Establishing new sites of polarization by microtubules. Curr Biol 2009; 19:83 - 94
  • Wood WB, Schonegg S. Rotation of 1-cell C. elegans embryos inside the egg shell reveals an early step in establishment of left-right polarity and embryonic handedness. International Worm Meeting 2005; Abstract110; http://www.wormbase.org/db/misc/paper?name=WBPaper00025920;class=Paper
  • Maddox AS, Lewellyn L, Desai A, Oegema K. Anillin and the septins promote asymmetric ingression of the cytokinetic furrow. Dev Cell 2007; 12:827 - 835
  • Danilchik MV, Brown EE, Riegert K. Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?. Development 2006; 133:4517 - 4526
  • Pohl C, Bao Z. Chiral forces organize left-right patterning in C. elegans by uncoupling midline and anteroposterior axis. Dev Cell 2010; 19:402 - 412
  • Priess JR, Schnabel H, Schnabel R. The glp-1 locus and cellular interactions in early C. elegans embryos. Cell 1987; 51:601 - 611
  • Mello CC, Draper BW, Priess JR. The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell 1994; 77:95 - 106
  • Mickey KM, Mello CC, Montgomery MK, Fire A, Priess JR. An inductive interaction in 4-cell stage C. elegans embryos involves APX-1 expression in the signalling cell. Development 1996; 122:1791 - 1798
  • Priess JR. Establishment of initial asymmetry in early Caenorhabditis elegans embryos. Curr OpinGenet Dev 1994; 4:563 - 568
  • Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 1995; 82:803 - 814
  • Grande C, Patel NH. Lophotrochozoa get into the game: the nodal pathway and left/right asymmetry in bilateria. Cold Spring Harb Symp Quant Biol 2009; 74:281 - 287
  • Grande C, Patel NH. Nodal signalling is involved in left-right asymmetry in snails. Nature 2009; 457:1007 - 1011
  • Collignon J, Varlet I, Robertson EJ. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 1996; 381:155 - 158
  • Lowe LA, Supp DM, Sampath K, Yokoyama T, Wright CV, Potter SS, Overbeek P, Kuehn MR. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 1996; 381:158 - 161
  • Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, et al. lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 1998; 94:287 - 297
  • Hutter H, Schnabel R. glp-1 and inductions establishing embryonic axes in C. elegans. Development 1994; 120:2051 - 2064
  • Hutter H, Schnabel R. Establishment of left-right asymmetry in the Caenorhabditis elegans embryo: a multistep process involving a series of inductive events. Development 1995; 121:3417 - 3424
  • Hermann GJ, Leung B, Priess JR. Left-right asymmetry in C. elegans intestine organogenesis involves a LIN-12/Notch signaling pathway. Development 2000; 127:3429 - 3440
  • Hobert O, Johnston RJ Jr, Chang S. Left-right asymmetry in the nervous system: the Caenorhabditis elegans model. Nature Rev Neurosci 2002; 3:629 - 640
  • Poole RJ, Hobert O. Early embryonic programming of neuronal left/right asymmetry in C. elegans. Curr Biol 2006; 16:2279 - 2292
  • Suzanne M, Petzoldt AG, Speder P, Coutelis JB, Steller H, Noselli S. Coupling of apoptosis and L/R patterning controls stepwise organ looping. Curr Biol 2010; 20:1773 - 1778
  • Hozumi S, Maeda R, Taniguchi K, Kanai M, Shirakabe S, Sasamura T, et al. An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature 2006; 440:798 - 802
  • Speder P, Adam G, Noselli S. Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature 2006; 440:803 - 807
  • Okumura T, Fujiwara H, Taniguchi K, Kuroda J, Nakazawa N, Nakamura M, et al. Left-right asymmetric morphogenesis of the anterior midgut depends on the activation of a non-muscle myosin II in Drosophila. Dev Biol 2010; 344:693 - 706
  • Dathe V, Gamel A, Manner J, Brand-Saberi B, Christ B. Morphological left-right asymmetry of Hensen's node precedes the asymmetric expression of Shh and Fgf8 in the chick embryo. Anatomy and embryology 2002; 205:343 - 354
  • Gros J, Feistel K, Viebahn C, Blum M, Tabin CJ. Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick. Science 2009; 324:941 - 944
  • Cui C, Little CD, Rongish BJ. Rotation of organizer tissue contributes to left-right asymmetry. Anat Rec 2009; 292:557 - 561
  • Nerurkar NL, Ramasubramanian A, Taber LA. Morphogenetic adaptation of the looping embryonic heart to altered mechanical loads. Dev Dyn 2006; 235:1822 - 1829
  • Schlesinger A, Shelton CA, Maloof JN, Meneghini M, Bowerman B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev 1999; 13:2028 - 2038
  • Walston T, Tuskey C, Edgar L, Hawkins N, Ellis G, Bowerman B, et al. Multiple Wnt signaling pathways converge to orient the mitotic spindle in early C. elegans embryos. Dev Cell 2004; 7:831 - 841
  • Lee JY, Marston DJ, Walston T, Hardin J, Halberstadt A, Goldstein B. Wnt/Frizzled signaling controls C. elegans gastrulation by activating actomyosin contractility. Curr Biol 2006; 16:1986 - 1997
  • Bischoff M, Schnabel R. A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo by a Wnt-dependent relay mechanism. PLoS Biol 2006; 4:396
  • Cabello J, Neukomm LJ, Gunesdogan U, Burkart K, Charette SJ, Lochnit G, et al. The Wnt pathway controls cell death engulfment, spindle orientation and migration through CED-10/Rac. PLoS Biol 2010; 8:1000297
  • Segalen M, Bellaiche Y. Cell division orientation and planar cell polarity pathways. Semin Cell Dev Biol 2009; 20:972 - 977
  • Zallen JA. Planar polarity and tissue morphogenesis. Cell 2007; 129:1051 - 1063
  • Wang Y, Nathans J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 2007; 134:647 - 658
  • Langenhan T, Promel S, Mestek L, Esmaeili B, Waller-Evans H, Hennig C, et al. Latrophilin signaling links anterior-posterior tissue polarity and oriented cell divisions in the C. elegans embryo. Dev Cell 2009; 17:494 - 504
  • Borovina A, Superina S, Voskas D, Ciruna B. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 2010; 12:407 - 412
  • Hashimoto M, Shinohara K, Wang J, Ikeuchi S, Yoshiba S, Meno C, et al. Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol 2010; 12:170 - 176
  • Song H, Hu J, Chen W, Elliott G, Andre P, Gao B, Yang Y. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 2010; 466:378 - 382
  • Aw S, Levin M. Is left-right asymmetry a form of planar cell polarity?. Development 2009; 136:355 - 366