713
Views
9
CrossRef citations to date
0
Altmetric
Article Addendum

Remodeling of the Listeria monocytogenes cell wall inside eukaryotic cells

&
Pages 160-162 | Published online: 01 Mar 2012

References

  • Vollmer W, Seligman SJ. Architecture of peptidoglycan: more data and more models. Trends Microbiol 2010; 18:59 - 66; http://dx.doi.org/10.1016/j.tim.2009.12.004; PMID: 20060721
  • Löfling J, Vimberg V, Battig P, Henriques-Normark B. Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues. Cell Microbiol 2011; 13:186 - 97; http://dx.doi.org/10.1111/j.1462-5822.2010.01560.x; PMID: 21199258
  • Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 2002; 10:238 - 45; http://dx.doi.org/10.1016/S0966-842X(02)02342-9; PMID: 11973158
  • Marraffini LA, Dedent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev 2006; 70:192 - 221; http://dx.doi.org/10.1128/MMBR.70.1.192-221.2006; PMID: 16524923
  • Bierne H, Cossart P. Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 2007; 71:377 - 97; http://dx.doi.org/10.1128/MMBR.00039-06; PMID: 17554049
  • Hain T, Steinweg C, Chakraborty T. Comparative and functional genomics of Listeria spp. J Biotechnol 2006; 126:37 - 51; http://dx.doi.org/10.1016/j.jbiotec.2006.03.047; PMID: 16757050
  • Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, et al. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 2004; 72:1072 - 83; http://dx.doi.org/10.1128/IAI.72.2.1072-1083.2004; PMID: 14742555
  • Bonazzi M, Lecuit M, Cossart P. Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis. Cell Microbiol 2009; 11:693 - 702; http://dx.doi.org/10.1111/j.1462-5822.2009.01293.x; PMID: 19191787
  • Cabanes D, Sousa S, Cebrí A, Lecuit M, García-del Portillo F, Cossart P. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J 2005; 24:2827 - 38; http://dx.doi.org/10.1038/sj.emboj.7600750; PMID: 16015374
  • Personnic N, Bruck S, Nahori MA, Toledo-Arana A, Nikitas G, Lecuit M, et al. The stress-induced virulence protein InlH controls interleukin-6 production during murine listeriosis. Infect Immun 2010; 78:1979 - 89; http://dx.doi.org/10.1128/IAI.01096-09; PMID: 20176794
  • Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori MA, Wiemer EA, et al. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog 2011; 7:e1002168; http://dx.doi.org/10.1371/journal.ppat.1002168; PMID: 21829365
  • Popowska M, Markiewicz Z. Characterization of Listeria monocytogenes protein Lmo0327 with murein hydrolase activity. Arch Microbiol 2006; 186:69 - 86; http://dx.doi.org/10.1007/s00203-006-0122-8; PMID: 16763838
  • Sabet C, Lecuit M, Cabanes D, Cossart P, Bierne H. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect Immun 2005; 73:6912 - 22; http://dx.doi.org/10.1128/IAI.73.10.6912-6922.2005; PMID: 16177371
  • Reis O, Sousa S, Camejo A, Villiers V, Gouin E, Cossart P, et al. LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 2010; 202:551 - 62; http://dx.doi.org/10.1086/654880; PMID: 20617901
  • Joseph B, Przybilla K, Stühler C, Schauer K, Slaghuis J, Fuchs TM, et al. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 2006; 188:556 - 68; http://dx.doi.org/10.1128/JB.188.2.556-568.2006; PMID: 16385046
  • Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, et al. Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 2006; 74:1323 - 38; http://dx.doi.org/10.1128/IAI.74.2.1323-1338.2006; PMID: 16428782
  • Camejo A, Buchrieser C, Couvé E, Carvalho F, Reis O, Ferreira P, et al. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 2009; 5:e1000449; http://dx.doi.org/10.1371/journal.ppat.1000449; PMID: 19478867
  • Aubry C, Goulard C, Nahori MA, Cayet N, Decalf J, Sachse M, et al. OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. J Infect Dis 2011; 204:731 - 40; http://dx.doi.org/10.1093/infdis/jir396; PMID: 21844299
  • Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A 2007; 104:997 - 1002; http://dx.doi.org/10.1073/pnas.0609672104; PMID: 17215377
  • Calvo E, Pucciarelli MG, Bierne H, Cossart P, Albar JP, García-Del Portillo F. Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. Proteomics 2005; 5:433 - 43; http://dx.doi.org/10.1002/pmic.200400936; PMID: 15627966
  • Pucciarelli MG, Calvo E, Sabet C, Bierne H, Cossart P, García-del Portillo F. Identification of substrates of the Listeria monocytogenes sortases A and B by a non-gel proteomic analysis. Proteomics 2005; 5:4808 - 17; http://dx.doi.org/10.1002/pmic.200402075; PMID: 16247833
  • García-del Portillo F, Calvo E, D’Orazio V, Pucciarelli MG. Association of ActA to peptidoglycan revealed by cell wall proteomics of intracellular Listeria monocytogenes. J Biol Chem 2011; 286:34675 - 89; http://dx.doi.org/10.1074/jbc.M111.230441; PMID: 21846725
  • Súrez M, González-Zorn B, Vega Y, Chico-Calero I, Vázquez-Boland JA. A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol 2001; 3:853 - 64; http://dx.doi.org/10.1046/j.1462-5822.2001.00160.x; PMID: 11736996
  • Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 2009; 11:1233 - 40; http://dx.doi.org/10.1038/ncb1967; PMID: 19749745
  • Lambrechts A, Gevaert K, Cossart P, Vandekerckhove J, Van Troys M. Listeria comet tails: the actin-based motility machinery at work. Trends Cell Biol 2008; 18:220 - 7; http://dx.doi.org/10.1016/j.tcb.2008.03.001; PMID: 18396046
  • Alvarez-Domínguez C, Vázquez-Boland JA, Carrasco-Marín E, López-Mato P, Leyva-Cobín F. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 1997; 65:78 - 88; PMID: 8975895
  • Wang L, Lin M. A novel cell wall-anchored peptidoglycan hydrolase (autolysin), IspC, essential for Listeria monocytogenes virulence: genetic and proteomic analysis. Microbiology 2008; 154:1900 - 13; http://dx.doi.org/10.1099/mic.0.2007/015172-0; PMID: 18599819
  • Bubert A, Sokolovic Z, Chun SK, Papatheodorou L, Simm A, Goebel W. Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 1999; 261:323 - 36; http://dx.doi.org/10.1007/PL00008633; PMID: 10102368
  • Schubert WD, Urbanke C, Ziehm T, Beier V, Machner MP, Domann E, et al. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 2002; 111:825 - 36; http://dx.doi.org/10.1016/S0092-8674(02)01136-4; PMID: 12526809