595
Views
16
CrossRef citations to date
0
Altmetric
Short Communication

Cytoplasmic superoxide radical

a possible contributing factor to intracellular Aβ oligomerization in Alzheimer disease

&
Pages 255-258 | Published online: 01 May 2012

References

  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120:885 - 90; http://dx.doi.org/10.1016/S0006-291X(84)80190-4; PMID: 6375662
  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985; 82:4245 - 9; http://dx.doi.org/10.1073/pnas.82.12.4245; PMID: 3159021
  • Roychaudhuri R, Yang M, Hoshi MM, Teplow DB. Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 2009; 284:4749 - 53; http://dx.doi.org/10.1074/jbc.R800036200; PMID: 18845536
  • Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 2004; 3:205 - 14; http://dx.doi.org/10.1038/nrd1330; PMID: 15031734
  • Murakami K, Shimizu T, Irie K. Formation of the 42-mer amyloid β radical and the therapeutic role of superoxide dismutase in Alzheimer's disease. J Amino Acids 2011; 2011:654207; http://dx.doi.org/10.4061/2011/654207; PMID: 22332002
  • Murakami K, Irie K, Ohigashi H, Hara H, Nagao M, Shimizu T, et al. Formation and stabilization model of the 42-mer Abeta radical: implications for the long-lasting oxidative stress in Alzheimer’s disease. J Am Chem Soc 2005; 127:15168 - 74; http://dx.doi.org/10.1021/ja054041c; PMID: 16248658
  • Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem 2001; 276:38388 - 93; http://dx.doi.org/10.1074/jbc.M105395200; PMID: 11507097
  • Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S, et al. Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 2006; 103:11282 - 7; http://dx.doi.org/10.1073/pnas.0602131103; PMID: 16844785
  • Uchiyama S, Shimizu T, Shirasawa T. CuZn-SOD deficiency causes ApoB degradation and induces hepatic lipid accumulation by impaired lipoprotein secretion in mice. J Biol Chem 2006; 281:31713 - 9; http://dx.doi.org/10.1074/jbc.M603422200; PMID: 16921198
  • Murakami K, Inagaki J, Saito M, Ikeda Y, Tsuda C, Noda Y, et al. Skin atrophy in cytoplasmic SOD-deficient mice and its complete recovery using a vitamin C derivative. Biochem Biophys Res Commun 2009; 382:457 - 61; http://dx.doi.org/10.1016/j.bbrc.2009.03.053; PMID: 19289104
  • Nojiri H, Saita Y, Morikawa D, Kobayashi K, Tsuda C, Miyazaki T, et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res 2011; 26:2682 - 94; http://dx.doi.org/10.1002/jbmr.489; PMID: 22025246
  • Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 2005; 93:953 - 62; http://dx.doi.org/10.1111/j.1471-4159.2005.03053.x; PMID: 15857398
  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995; 11:376 - 81; http://dx.doi.org/10.1038/ng1295-376; PMID: 7493016
  • Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr., Dionne L, Lu N, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 1996; 93:9782 - 7; http://dx.doi.org/10.1073/pnas.93.18.9782; PMID: 8790408
  • Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, et al. SOD1 deficiency drives amyloid β oligomerization and memory loss in a mouse model of Alzheimer's disease. J Biol Chem 2011; 287:44557 - 68; http://dx.doi.org/10.1074/jbc.M111.279208
  • Murakami K, Murata N, Noda Y, Irie K, Shirasawa T, Shimizu T. Stimulation of the amyloidogenic pathway by cytoplasmic superoxide radicals in an Alzheimer's disease mouse model. Biosci Biotechnol Biochem 74:541 - 7; http://dx.doi.org/10.1271/bbb.90729; PMID: 20208365
  • Murakami K, Horikoshi-Sakuraba Y, Murata N, Noda Y, Masuda Y, Kinoshita N, et al. Monoclonal antibody against the turn of the 42-residue amyloid β protein at positions 22 and 23. ACS Chem Neurosci 2010; 1:747 - 56; http://dx.doi.org/10.1021/cn100072e
  • Himeno E, Ohyagi Y, Ma L, Nakamura N, Miyoshi K, Sakae N, et al. Apomorphine treatment in Alzheimer mice promoting amyloid-β degradation. Ann Neurol 2011; 69:248 - 56; http://dx.doi.org/10.1002/ana.22319; PMID: 21387370
  • Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, et al. Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 2000; 156:15 - 20; http://dx.doi.org/10.1016/S0002-9440(10)64700-1; PMID: 10623648
  • Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL, et al. Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 2011; 89:1031 - 42; http://dx.doi.org/10.1002/jnr.22640; PMID: 21488093
  • Yoon EJ, Park HJ, Kim GY, Cho HM, Choi JH, Park HY, et al. Intracellular amyloid β interacts with SOD1 and impairs the enzymatic activity of SOD1: implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med 2009; 41:611 - 7; http://dx.doi.org/10.3858/emm.2009.41.9.067; PMID: 19478559
  • Gray EH, De Vos KJ, Dingwall C, Perkinton MS, Miller CC. Deficiency of the copper chaperone for superoxide dismutase increases amyloid-β production. J Alzheimers Dis 2010; 21:1101 - 5; PMID: 20693630
  • Niwa K, Carlson GA, Iadecola C. Exogenous A β1-40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab 2000; 20:1659 - 68; http://dx.doi.org/10.1097/00004647-200012000-00005; PMID: 11129782
  • Bayer TA, Schäfer S, Simons A, Kemmling A, Kamer T, Tepest R, et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A 2003; 100:14187 - 92; http://dx.doi.org/10.1073/pnas.2332818100; PMID: 14617773
  • Baudry M, Etienne S, Bruce A, Palucki M, Jacobsen E, Malfroy B. Salen-manganese complexes are superoxide dismutase-mimics. Biochem Biophys Res Commun 1993; 192:964 - 8; http://dx.doi.org/10.1006/bbrc.1993.1509; PMID: 8484797
  • Ferrer-Sueta G, Ruiz-Ramírez L, Radi R. Ternary copper complexes and manganese (III) tetrakis(4-benzoic acid) porphyrin catalyze peroxynitrite-dependent nitration of aromatics. Chem Res Toxicol 1997; 10:1338 - 44; http://dx.doi.org/10.1021/tx970116h; PMID: 9437523
  • McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 2011; 31:15703 - 15; http://dx.doi.org/10.1523/JNEUROSCI.0552-11.2011; PMID: 22049413
  • Ma T, Hoeffer CA, Wong H, Massaad CA, Zhou P, Iadecola C, et al. Amyloid β-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J Neurosci 2011; 31:5589 - 95; http://dx.doi.org/10.1523/JNEUROSCI.6566-10.2011; PMID: 21490199
  • Liang LP, Huang J, Fulton R, Day BJ, Patel M. An orally active catalytic metalloporphyrin protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in vivo. J Neurosci 2007; 27:4326 - 33; http://dx.doi.org/10.1523/JNEUROSCI.0019-07.2007; PMID: 17442816
  • Ma L, Ohyagi Y, Nakamura N, Iinuma KM, Miyoshi K, Himeno E, et al. Activation of glutathione peroxidase and inhibition of p53-related apoptosis by apomorphine. J Alzheimers Dis 2011; 27:225 - 37; PMID: 21799252