2,609
Views
85
CrossRef citations to date
0
Altmetric
Article Addendum

Tunneling Nanotubes

A new paradigm for studying intercellular communication and therapeutics in cancer

, , , , , & show all
Pages 399-403 | Published online: 01 Jul 2012

References

  • Zani BG, Indolfi L, Edelman ER. Tubular bridges for bronchial epithelial cell migration and communication. PLoS One 2010; 5:e8930; http://dx.doi.org/10.1371/journal.pone.0008930; PMID: 20126618
  • Watkins SC, Salter RD. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 2005; 23:309 - 18; http://dx.doi.org/10.1016/j.immuni.2005.08.009; PMID: 16169503
  • Ventelä S, Toppari J, Parvinen M. Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell 2003; 14:2768 - 80; http://dx.doi.org/10.1091/mbc.E02-10-0647; PMID: 12857863
  • Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 2008; 10:211 - 9; http://dx.doi.org/10.1038/ncb1682; PMID: 18193035
  • Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 2007; 9:310 - 5; http://dx.doi.org/10.1038/ncb1544; PMID: 17293854
  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH. Nanotubular highways for intercellular organelle transport. Science 2004; 303:1007 - 10; http://dx.doi.org/10.1126/science.1093133; PMID: 14963329
  • Onfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 2006; 177:8476 - 83; PMID: 17142745
  • Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One 2012; 7:e33093; http://dx.doi.org/10.1371/journal.pone.0033093; PMID: 22427958
  • Gurke S, Barroso JF, Hodneland E, Bukoreshtliev NV, Schlicker O, Gerdes HH. Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp Cell Res 2008; 314:3669 - 83; http://dx.doi.org/10.1016/j.yexcr.2008.08.022; PMID: 18845141
  • Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009; 11:328 - 36; http://dx.doi.org/10.1038/ncb1841; PMID: 19198598
  • Eugenin EA, Gaskill PJ, Berman JW. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 2009; 254:142 - 8; http://dx.doi.org/10.1016/j.cellimm.2008.08.005; PMID: 18835599
  • Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011; 144:590 - 600; http://dx.doi.org/10.1016/j.cell.2011.01.015; PMID: 21335240
  • Arkwright PD, Luchetti F, Tour J, Roberts C, Ayub R, Morales AP, et al. Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 2010; 20:72 - 88; http://dx.doi.org/10.1038/cr.2009.112; PMID: 19770844
  • Kwok R. Cell biology: The new cell anatomy. Nature 2011; 480:26 - 8; http://dx.doi.org/10.1038/480026a; PMID: 22129705
  • Cho YM, Kim JH, Kim M, Park SJ, Koh SH, Ahn HS, et al. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One 2012; 7:e32778; http://dx.doi.org/10.1371/journal.pone.0032778; PMID: 22412925
  • Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, le Coz O, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 2011; 29:812 - 24; http://dx.doi.org/10.1002/stem.632; PMID: 21433223
  • Morozov A, Downey RJ, Healey J, Moreira AL, Lou E, Franceschino A, et al. Benign mesenchymal stromal cells in human sarcomas. Clinical cancer research: an official journal of the American Association for Cancer Research 2010; 16:5630-40.
  • Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 2012; 21:66 - 81; http://dx.doi.org/10.1016/j.ccr.2011.11.024; PMID: 22264789
  • Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012; 366:520 - 9; http://dx.doi.org/10.1056/NEJMoa1109653; PMID: 22149876
  • Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al, RECORD‐1 Study Group. Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors. Cancer 2010; 116:4256 - 65; http://dx.doi.org/10.1002/cncr.25219; PMID: 20549832
  • Garrett CR, Hassabo HM, Bhadkamkar NA, Wen S, Baladandayuthapani V, Kee BK, et al. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br J Cancer 2012; 106:1374 - 8; http://dx.doi.org/10.1038/bjc.2012.71; PMID: 22421948
  • Bo S, Ciccone G, Rosato R, Villois P, Appendino G, Ghigo E, et al. Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab 2012; 14:23 - 9; http://dx.doi.org/10.1111/j.1463-1326.2011.01480.x; PMID: 21812892
  • Algire C, Moiseeva O, Deschênes-Simard X, Amrein L, Petruccelli L, Birman E, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res (Phila) 2012; 5:536 - 43; http://dx.doi.org/10.1158/1940-6207.CAPR-11-0536; PMID: 22262811
  • Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315:1650 - 9; PMID: 3537791
  • Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 2001; 264:169 - 84; http://dx.doi.org/10.1006/excr.2000.5133; PMID: 11237532
  • de Kruijf EM, van Nes JG, van de Velde CJ, Putter H, Smit VT, Liefers GJ, et al. Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat 2011; 125:687 - 96; http://dx.doi.org/10.1007/s10549-010-0855-6; PMID: 20361254
  • McKinney MC, Stark DA, Teddy J, Kulesa PM. Neural crest cell communication involves an exchange of cytoplasmic material through cellular bridges revealed by photoconversion of KikGR. Developmental dynamics: an official publication of the American Association of Anatomists 2011; 240:1391-401.
  • Caneparo L, Pantazis P, Dempsey W, Fraser SE. Intercellular bridges in vertebrate gastrulation. PLoS One 2011; 6:e20230; http://dx.doi.org/10.1371/journal.pone.0020230; PMID: 21647454
  • Vidulescu C, Clejan S, O’connor KC. Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J Cell Mol Med 2004; 8:388 - 96; http://dx.doi.org/10.1111/j.1582-4934.2004.tb00328.x; PMID: 15491514
  • Jung SH, Park J-Y, Joo J-H, Kim Y-M, Ha K-S. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: formation of intercellular membrane bridges. Exp Cell Res 2011; 317:1763 - 73; http://dx.doi.org/10.1016/j.yexcr.2011.02.010; PMID: 21356206
  • Xue Y, Xing Z, Hellem S, Arvidson K, Mustafa K. Endothelial cells influence the osteogenic potential of bone marrow stromal cells. Biomed Eng Online 2009; 8:34; http://dx.doi.org/10.1186/1475-925X-8-34; PMID: 19919705
  • Zani BG, Edelman ER. Cellular bridges: Routes for intercellular communication and cell migration. Commun Integr Biol 2010; 3:215 - 20; http://dx.doi.org/10.4161/cib.3.3.11659; PMID: 20714396
  • Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC, et al. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol 2009; 10:1008 - 17; http://dx.doi.org/10.1038/ni.1753; PMID: 19648924
  • Kadiu I, Gendelman HE. Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network. J Proteome Res 2011; 10:3225 - 38; http://dx.doi.org/10.1021/pr200262q; PMID: 21563830
  • Kadiu I, Gendelman HE. Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology 2011; 6:658-75.
  • Kabaso D, Bobrovska N, Góźdź W, Gongadze E, Kralj-Iglič V, Zorec R, et al. The transport along membrane nanotubes driven by the spontaneous curvature of membrane components. Bioelectrochemistry 2012; http://dx.doi.org/10.1016/j.bioelechem.2012.02.009; PMID: 22502994
  • Chauveau A, Aucher A, Eissmann P, Vivier E, Davis DM. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proc Natl Acad Sci U S A 2010; 107:5545 - 50; http://dx.doi.org/10.1073/pnas.0910074107; PMID: 20212116
  • Iglic A, Lokar M, Babnik B, Slivnik T, Veranic P, Hägerstrand H, et al. Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes. Blood Cells Mol Dis 2007; 39:14 - 23; http://dx.doi.org/10.1016/j.bcmd.2007.02.013; PMID: 17475520
  • He K, Shi X, Zhang X, Dang S, Ma X, Liu F, et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res 2011; 92:39 - 47; http://dx.doi.org/10.1093/cvr/cvr189; PMID: 21719573
  • Kabaso D, Lokar M, Kralj-Iglič V, Veranič P, Iglič A. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines. Int J Nanomedicine 2011; 6:495 - 509; http://dx.doi.org/10.2147/IJN.S16982; PMID: 21468353