531
Views
14
CrossRef citations to date
0
Altmetric
Short Communication

Tissue-specific control of CFTR endocytosis by Dab2

Cargo recruitment as a therapeutic target

&
Pages 473-476 | Published online: 01 Sep 2012

References

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245:1066 - 73; http://dx.doi.org/10.1126/science.2475911; PMID: 2475911
  • Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245:1059 - 65; http://dx.doi.org/10.1126/science.2772657; PMID: 2772657
  • Howard M, Jiang X, Stolz DB, Hill WG, Johnson JA, Watkins SC, et al. Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells. Am J Physiol Cell Physiol 2000; 279:C375 - 82; PMID: 10913004
  • Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 2004; 23:146 - 58; http://dx.doi.org/10.1183/09031936.03.00057003; PMID: 14738247
  • Tarran R, Button B, Boucher RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 2006; 68:543 - 61; http://dx.doi.org/10.1146/annurev.physiol.68.072304.112754; PMID: 16460283
  • Bertrand CA, Frizzell RA. The role of regulated CFTR trafficking in epithelial secretion. Am J Physiol Cell Physiol 2003; 285:C1 - 18; PMID: 12777252
  • Guggino WB, Stanton BA. New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 2006; 7:426 - 36; http://dx.doi.org/10.1038/nrm1949; PMID: 16723978
  • Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem 2008; 77:701 - 26; http://dx.doi.org/10.1146/annurev.biochem.75.103004.142532; PMID: 18304008
  • Lukacs GL, Segal G, Kartner N, Grinstein S, Zhang F. Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem J 1997; 328:353 - 61; PMID: 9371688
  • Prince LS, Peter K, Hatton SR, Zaliauskiene L, Cotlin LF, Clancy JP, et al. Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal. J Biol Chem 1999; 274:3602 - 9; http://dx.doi.org/10.1074/jbc.274.6.3602; PMID: 9920908
  • Swiatecka-Urban A, Brown A, Moreau-Marquis S, Renuka J, Coutermarsh B, Barnaby R, et al. The short apical membrane half-life of rescued uF508-CFTR results from accelerated endocytosis uF508-CFTR in polarized human airway epithelial cells. J Biol Chem 2005; 280:36762 - 72; http://dx.doi.org/10.1074/jbc.M508944200; PMID: 16131493
  • Okiyoneda T, Lukacs GL. Cell surface dynamics of CFTR: the ins and outs. Biochim Biophys Acta 2007; 1773:476-9.
  • Traub LM. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol 2003; 163:203 - 8; http://dx.doi.org/10.1083/jcb.200309175; PMID: 14581447
  • Meyer C, Zizioli D, Lausmann S, Eskelinen EL, Hamann J, Saftig P, et al. mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J 2000; 19:2193 - 203; http://dx.doi.org/10.1093/emboj/19.10.2193; PMID: 10811610
  • Peden AA, Rudge RE, Lui WW, Robinson MS. Assembly and function of AP-3 complexes in cells expressing mutant subunits. J Cell Biol 2002; 156:327 - 36; http://dx.doi.org/10.1083/jcb.200107140; PMID: 11807095
  • Motley A, Bright NA, Seaman MN, Robinson MS. Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 2003; 162:909 - 18; http://dx.doi.org/10.1083/jcb.200305145; PMID: 12952941
  • Collaco A, Jakab R, Hegan P, Mooseker M, Ameen N. Alpha-AP-2 directs myosin VI-dependent endocytosis of cystic fibrosis transmembrane conductance regulator chloride channels in the intestine. J Biol Chem 2010; 285:17177 - 87; http://dx.doi.org/10.1074/jbc.M110.127613; PMID: 20351096
  • Ye S, Cihil K, Stolz DB, Pilewski JM, Stanton BA, Swiatecka-Urban A. c-Cbl facilitates endocytosis and lysosomal degradation of cystic fibrosis transmembrane conductance regulator in human airway epithelial cells. J Biol Chem 2010; 285:27008 - 18; http://dx.doi.org/10.1074/jbc.M110.139881; PMID: 20525683
  • Fu L, Rab A, Tang LP, Rowe SM, Bebok Z, Collawn JF. Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator. Biochem J 2012; 441:633 - 43; http://dx.doi.org/10.1042/BJ20111566; PMID: 21995445
  • Cihil KM, Ellinger P, Fellows A, Stolz DB, Madden DR, Swiatecka-Urban A. Disabled-2 protein facilitates assembly polypeptide-2-independent recruitment of cystic fibrosis transmembrane conductance regulator to endocytic vesicles in polarized human airway epithelial cells. J Biol Chem 2012; 287:15087 - 99; http://dx.doi.org/10.1074/jbc.M112.341875; PMID: 22399289
  • Weixel KM, Bradbury NA. The carboxyl terminus of the cystic fibrosis transmembrane conductance regulator binds to AP-2 clathrin adaptors. J Biol Chem 2000; 275:3655 - 60; http://dx.doi.org/10.1074/jbc.275.5.3655; PMID: 10652362
  • Weixel KM, Bradbury NA. micro2 binding directs the cystic fibrosis transmembrane conductance regulator to the clathrin-mediated endocytic pathway. J Biol Chem 2002; 276:46251 - 9; http://dx.doi.org/10.1074/jbc.M104545200
  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 2011; 108:18843 - 8; http://dx.doi.org/10.1073/pnas.1105787108; PMID: 21976485
  • Lubamba B, Dhooghe B, Noel S, Leal T. Cystic fibrosis: Insight into CFTR pathophysiology and pharmacotherapy. [accepted June 12; Epub ahead of print] Clin Biochem 2012; In press http://dx.doi.org/10.1016/j.clinbiochem.2012.05.034; PMID: 22698459
  • Sharma M, Pampinella F, Nemes C, Benharouga M, So J, Du K, et al. Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 2004; 164:923 - 33; http://dx.doi.org/10.1083/jcb.200312018; PMID: 15007060
  • Cheng J, Moyer BD, Milewski M, Loffing J, Ikeda M, Mickle JE, et al. A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J Biol Chem 2002; 277:3520 - 9; http://dx.doi.org/10.1074/jbc.M110177200; PMID: 11707463
  • Wolde M, Fellows A, Cheng J, Kivenson A, Coutermarsh B, Talebian L, et al. Targeting CAL as a negative regulator of DeltaF508-CFTR cell-surface expression: an RNA interference and structure-based mutagenetic approach. J Biol Chem 2007; 282:8099 - 109; http://dx.doi.org/10.1074/jbc.M611049200; PMID: 17158866
  • Cushing PR, Vouilleme L, Pellegrini M, Boisguerin P, Madden DR. A stabilizing influence: CAL PDZ inhibition extends the half-life of ΔF508-CFTR. Angew Chem Int Ed Engl 2010; 49:9907 - 11; http://dx.doi.org/10.1002/anie.201005585; PMID: 21105033
  • Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput Biol 2012; 8:e1002477; http://dx.doi.org/10.1371/journal.pcbi.1002477; PMID: 22532795
  • Xu XX, Yang W, Jackowski S, Rock CO. Cloning of a novel phosphoprotein regulated by colony-stimulating factor 1 shares a domain with the Drosophila disabled gene product. J Biol Chem 1995; 270:14184 - 91; http://dx.doi.org/10.1074/jbc.270.23.14184; PMID: 7775479