654
Views
13
CrossRef citations to date
0
Altmetric
Short Communication

Fructose-1,6-bisphosphatase, Malate Dehydrogenase, Isocitrate Lyase, Phosphoenolpyruvate Carboxykinase, Glyceraldehyde-3-phosphate Dehydrogenase, and Cyclophilin A are secreted in Saccharomyces cerevisiae grown in low glucose

&
Article: e27216 | Received 01 Oct 2013, Accepted 15 Nov 2013, Published online: 10 Dec 2013

References

  • Giardina BJ, Stanley BA, Chiang HL. Comparative proteomic analysis of transition of saccharomyces cerevisiae from glucose-deficient medium to glucose-rich medium. Proteome Sci 2012; 10:40; http://dx.doi.org/10.1186/1477-5956-10-40; PMID: 22691627
  • Carlson M. Regulation of glucose utilization in yeast. Curr Opin Genet Dev 1998; 8:560 - 4; http://dx.doi.org/10.1016/S0959-437X(98)80011-7; PMID: 9794821
  • Carlson M. Glucose repression in yeast. Curr Opin Microbiol 1999; 2:202 - 7; http://dx.doi.org/10.1016/S1369-5274(99)80035-6; PMID: 10322167
  • Gancedo C. Inactivation of fructose-1,6-diphosphatase by glucose in yeast. J Bacteriol 1971; 107:401 - 5; PMID: 4329729
  • Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev 1998; 62:334 - 61; PMID: 9618445
  • Gancedo JM. The early steps of glucose signalling in yeast. FEMS Microbiol Rev 2008; 32:673 - 704; http://dx.doi.org/10.1111/j.1574-6976.2008.00117.x; PMID: 18559076
  • Holzer H. Proteolytic catabolite inactivation in Saccharomyces cerevisiae. Revis Biol Celular 1989; 21:305 - 19; PMID: 2561496
  • Schork SM, Thumm M, Wolf DH. Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation occurs via the ubiquitin pathway. J Biol Chem 1995; 270:26446 - 50; http://dx.doi.org/10.1074/jbc.270.44.26446; PMID: 7592860
  • Schüle T, Rose M, Entian KD, Thumm M, Wolf DH. Ubc8p functions in catabolite degradation of fructose-1, 6-bisphosphatase in yeast. EMBO J 2000; 19:2161 - 7; http://dx.doi.org/10.1093/emboj/19.10.2161; PMID: 10811607
  • Alibhoy AA, Chiang HL. The TOR complex 1 is required for the interaction of multiple cargo proteins selected for the vacuole import and degradation pathway. Commun Integr Biol 2010; 3:594 - 6; http://dx.doi.org/10.4161/cib.3.6.13241; PMID: 21331250
  • Alibhoy AA, Chiang HL. Vacuole import and degradation pathway: Insights into a specialized autophagy pathway. World J Biol Chem 2011; 2:239 - 45; http://dx.doi.org/10.4331/wjbc.v2.i11.239; PMID: 22125667
  • Alibhoy AA, Giardina BJ, Dunton DD, Chiang HL. Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway. Autophagy 2012; 8:29 - 46; http://dx.doi.org/10.4161/auto.8.1.18104; PMID: 22082961
  • Brown CR, Chiang HL. A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation. Commun Integr Biol 2009; 2:177 - 83; PMID: 19513275
  • Brown CR, Cui DY, Hung GG, Chiang HL. Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles. J Biol Chem 2001; 276:48017 - 26; PMID: 11641409
  • Brown CR, Dunton D, Chiang HL. The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation. J Biol Chem 2010; 285:1516 - 28; http://dx.doi.org/10.1074/jbc.M109.028241; PMID: 19892709
  • Brown CR, Hung GC, Dunton D, Chiang HL. The TOR complex 1 is distributed in endosomes and in retrograde vesicles that form from the vacuole membrane and plays an important role in the vacuole import and degradation pathway. J Biol Chem 2010; 285:23359 - 70; http://dx.doi.org/10.1074/jbc.M109.075143; PMID: 20457600
  • Brown CR, McCann JA, Chiang HL. The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles. J Cell Biol 2000; 150:65 - 76; http://dx.doi.org/10.1083/jcb.150.1.65; PMID: 10893257
  • Brown CR, McCann JA, Hung GG, Elco CP, Chiang HL. Vid22p, a novel plasma membrane protein, is required for the fructose-1,6-bisphosphatase degradation pathway. J Cell Sci 2002; 115:655 - 66; PMID: 11861771
  • Brown CR, Wolfe AB, Cui D, Chiang HL. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 2008; 283:26116 - 27; http://dx.doi.org/10.1074/jbc.M709922200; PMID: 18660504
  • Chiang HL, Schekman R. Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature 1991; 350:313 - 8; http://dx.doi.org/10.1038/350313a0; PMID: 1848921
  • Chiang HL, Schekman R, Hamamoto S. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J Biol Chem 1996; 271:9934 - 41; http://dx.doi.org/10.1074/jbc.271.17.9934; PMID: 8626630
  • Alibhoy AA, Giardina BJ, Dunton DD, Chiang HL. Vps34p is required for the decline of extracellular fructose-1,6-bisphosphatase in the vacuole import and degradation pathway. J Biol Chem 2012; 287:33080 - 93; http://dx.doi.org/10.1074/jbc.M112.360412; PMID: 22833678
  • Giardina BJ, Chiang HL. The key gluconeogenic enzyme fructose-1,6-bisphosphatase is secreted during prolonged glucose starvation and is internalized following glucose re-feeding via the non-classical secretory and internalizing pathways in Saccharomyces cerevisiae. Plant Signal Behav 2013; 8:8; http://dx.doi.org/10.4161/psb.24936; PMID: 23673352
  • Giardina BJ, Dunton D, Chiang HL. Vid28 protein is required for the association of vacuole import and degradation (Vid) vesicles with actin patches and the retention of Vid vesicle proteins in the intracellular fraction. J Biol Chem 2013; 288:11636 - 48; http://dx.doi.org/10.1074/jbc.M112.419895; PMID: 23393132
  • Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 2004; 279:49138 - 50; http://dx.doi.org/10.1074/jbc.M404544200; PMID: 15358789
  • Huang PH, Chiang HL. Identification of novel vesicles in the cytosol to vacuole protein degradation pathway. J Cell Biol 1997; 136:803 - 10; http://dx.doi.org/10.1083/jcb.136.4.803; PMID: 9049246
  • Delgado ML, Gil ML, Gozalbo D. Starvation and temperature upshift cause an increase in the enzymatically active cell wall-associated glyceraldehyde-3-phosphate dehydrogenase protein in yeast. FEMS Yeast Res 2003; 4:297 - 303; http://dx.doi.org/10.1016/S1567-1356(03)00159-4; PMID: 14654434
  • Delgado ML, O’Connor JE, Azorín I, Renau-Piqueras J, Gil ML, Gozalbo D. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins. Microbiology 2001; 147:411 - 7; PMID: 11158358
  • Rowe JD, Harbertson JF, Osborne JP, Freitag M, Lim J, Bakalinsky AT. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees. J Agric Food Chem 2010; 58:2337 - 46; http://dx.doi.org/10.1021/jf903660a; PMID: 20108898
  • Oliveira DL, Nakayasu ES, Joffe LS, Guimarães AJ, Sobreira TJ, Nosanchuk JD, Cordero RJ, Frases S, Casadevall A, Almeida IC, et al. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 2010; 5:e11113; http://dx.doi.org/10.1371/journal.pone.0011113; PMID: 20559436
  • Cappellaro C, Mrsa V, Tanner W. New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 1998; 180:5030 - 7; PMID: 9748433
  • Rodrigues ML, Franzen AJ, Nimrichter L, Miranda K. Vesicular mechanisms of traffic of fungal molecules to the extracellular space. Curr Opin Microbiol 2013; 16:414 - 20; http://dx.doi.org/10.1016/j.mib.2013.04.002; PMID: 23628115
  • Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L. The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J Proteomics 2013; http://dx.doi.org/10.1016/j.jprot.2013.04.001; PMID: 23583696
  • Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008; 7:58 - 67; http://dx.doi.org/10.1128/EC.00370-07; PMID: 18039940
  • Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 2007; 6:48 - 59; http://dx.doi.org/10.1128/EC.00318-06; PMID: 17114598
  • Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, Almeida IC, Nosanchuk JD. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 2008; 10:1695 - 710; http://dx.doi.org/10.1111/j.1462-5822.2008.01160.x; PMID: 18419773
  • Vallejo MC, Matsuo AL, Ganiko L, Medeiros LC, Miranda K, Silva LS, Freymüller-Haapalainen E, Sinigaglia-Coimbra R, Almeida IC, Puccia R. The pathogenic fungus Paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α-Galactosyl epitopes. Eukaryot Cell 2011; 10:343 - 51; http://dx.doi.org/10.1128/EC.00227-10; PMID: 21216942
  • Vallejo MC, Nakayasu ES, Longo LV, Ganiko L, Lopes FG, Matsuo AL, Almeida IC, Puccia R. Lipidomic analysis of extracellular vesicles from the pathogenic phase of Paracoccidioides brasiliensis. PLoS One 2012; 7:e39463; http://dx.doi.org/10.1371/journal.pone.0039463; PMID: 22745761
  • Oliveira DL, Nakayasu ES, Joffe LS, Guimarães AJ, Sobreira TJ, Nosanchuk JD, Cordero RJ, Frases S, Casadevall A, Almeida IC, et al. Biogenesis of extracellular vesicles in yeast: Many questions with few answers. Commun Integr Biol 2010; 3:533 - 5; http://dx.doi.org/10.4161/cib.3.6.12756; PMID: 21331232
  • Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, Lundeberg L, Gabrielsson S, Scheynius A. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema. PLoS One 2011; 6:e21480; http://dx.doi.org/10.1371/journal.pone.0021480; PMID: 21799736