2,185
Views
31
CrossRef citations to date
0
Altmetric
Review

Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization

&
Article: e29053 | Received 26 Apr 2014, Accepted 29 Apr 2014, Published online: 16 May 2014

References

  • Wright JR. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 2005; 5:58 - 68; http://dx.doi.org/10.1513/pats.200701-018AW; PMID: 17607008
  • Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1998; 1408:79 - 89; http://dx.doi.org/10.1016/S0925-4439(98)00060-X; PMID: 9813251
  • Pérez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta 2008; 1778:1676 - 95; http://dx.doi.org/10.1016/j.bbamem.2008.05.003; PMID: 18515069
  • LeVine AM, Whitsett JA. Pulmonary collectins and innate host defense of the lung. Microbes Infect 2001; 3:161 - 6; http://dx.doi.org/10.4049/jimmunol.181.1.621; PMID: 18566429
  • Glasser SW, Maxfield MD, Ruetschilling TL, Akinbi HT, Baatz JE, Kitzmiller JA, Page K, Xu Y, Bao EL, Korfhagen TR. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice. Am J Respir Cell Mol Biol 2013; 49:845 - 54; http://dx.doi.org/10.1165/rcmb.2012-0374OC; PMID: 23795648
  • Whitsett JA. Review: The intersection of surfactant homeostasis and innate host defense of the lung: lessons from newborn infants. Innate Immun 2010; 16:138 - 42; http://dx.doi.org/10.1177/1753425910366879; PMID: 20351134
  • Koulenti D, Rello J. Gram-negative bacterial pneumonia: aetiology and management. Curr Opin Pulm Med 2006; 12:198 - 204; PMID: 16582675
  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282:2085 - 8; http://dx.doi.org/10.1126/science.282.5396.2085; PMID: 9851930
  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162:3749 - 52; PMID: 10201887
  • Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, Florquin S, van der Poll T. Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 2004; 72:788 - 94; http://dx.doi.org/10.1128/IAI.72.2.788-794.2004; PMID: 14742522
  • Schurr JR, Young E, Byrne P, Steele C, Shellito JE, Kolls JK. Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Infect Immun 2005; 73:532 - 45; http://dx.doi.org/10.1128/IAI.73.1.532-545.2005; PMID: 15618193
  • Standiford LR, Standiford TJ, Newstead MJ, Zeng X, Ballinger MN, Kovach MA, Reka AK, Bhan U. TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2012; 302:L447 - 54; http://dx.doi.org/10.1152/ajplung.00415.2010; PMID: 22160309
  • Power MR, Peng Y, Maydanski E, Marshall JS, Lin TJ. The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem 2004; 279:49315 - 22; http://dx.doi.org/10.1074/jbc.M402111200; PMID: 15375173
  • Wang X, Moser C, Louboutin JP, Lysenko ES, Weiner DJ, Weiser JN, Wilson JM. Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J Immunol 2002; 168:810 - 5; http://dx.doi.org/10.4049/jimmunol.168.2.810; PMID: 11777976
  • Jeyaseelan S, Young SK, Yamamoto M, Arndt PG, Akira S, Kolls JK, Worthen GS. Toll/IL-1R domain-containing adaptor protein (TIRAP) is a critical mediator of antibacterial defense in the lung against Klebsiella pneumoniae but not Pseudomonas aeruginosa. J Immunol 2006; 177:538 - 47; http://dx.doi.org/10.4049/jimmunol.177.1.538; PMID: 16785551
  • Cai S, Batra S, Shen L, Wakamatsu N, Jeyaseelan S. Both TRIF- and MyD88-dependent signaling contribute to host defense against pulmonary Klebsiella infection. J Immunol 2009; 183:6629 - 38; http://dx.doi.org/10.4049/jimmunol.0901033; PMID: 19846873
  • Skerrett SJ, Liggitt HD, Hajjar AM, Wilson CB. Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol 2004; 172:3377 - 81; http://dx.doi.org/10.4049/jimmunol.172.6.3377; PMID: 15004134
  • Power MR, Li B, Yamamoto M, Akira S, Lin TJ. A role of Toll-IL-1 receptor domain-containing adaptor-inducing IFN-beta in the host response to Pseudomonas aeruginosa lung infection in mice. J Immunol 2007; 178:3170 - 6; http://dx.doi.org/10.4049/jimmunol.178.5.3170; PMID: 17312165
  • Wieland CW, Florquin S, Maris NA, Hoebe K, Beutler B, Takeda K, Akira S, van der Poll T. The MyD88-dependent, but not the MyD88-independent, pathway of TLR4 signaling is important in clearing nontypeable Haemophilus influenzae from the mouse lung. J Immunol 2005; 175:6042 - 9; http://dx.doi.org/10.4049/jimmunol.175.9.6042; PMID: 16237099
  • Jeyaseelan S, Manzer R, Young SK, Yamamoto M, Akira S, Mason RJ, Worthen GS. Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung immune responses against Escherichia coli lipopolysaccharide and viable Escherichia coli. J Immunol 2005; 175:7484 - 95; http://dx.doi.org/10.4049/jimmunol.175.11.7484; PMID: 16301656
  • Wieland CW, van Lieshout MH, Hoogendijk AJ, van der Poll T. Host defence during Klebsiella pneumonia relies on haematopoietic-expressed Toll-like receptors 4 and 2. Eur Respir J 2011; 37:848 - 57; http://dx.doi.org/10.1183/09031936.00076510; PMID: 20650991
  • Detmers PA, Thieblemont N, Vasselon T, Pironkova R, Miller DS, Wright SD. Potential role of membrane internalization and vesicle fusion in adhesion of neutrophils in response to lipopolysaccharide and TNF. J Immunol 1996; 157:5589 - 96; PMID: 8955211
  • Thiéblemont N, Wright SD. Mice genetically hyporesponsive to lipopolysaccharide (LPS) exhibit a defect in endocytic uptake of LPS and ceramide. J Exp Med 1997; 185:2095 - 100; http://dx.doi.org/10.1084/jem.185.12.2095; PMID: 9182681
  • Thieblemont N, Thieringer R, Wright SD. Innate immune recognition of bacterial lipopolysaccharide: dependence on interactions with membrane lipids and endocytic movement. Immunity 1998; 8:771 - 7; http://dx.doi.org/10.1016/S1074-7613(00)80582-8; PMID: 9655491
  • Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009; 9:535 - 42; http://dx.doi.org/10.1038/nri2587; PMID: 19556980
  • McGettrick AF, O’Neill LA. Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol 2010; 22:20 - 7; http://dx.doi.org/10.1016/j.coi.2009.12.002; PMID: 20060278
  • Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, Kurt-Jones EA, Golenbock DT, Espevik T. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 2002; 277:47834 - 43; http://dx.doi.org/10.1074/jbc.M207873200; PMID: 12324469
  • Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 2002; 3:667 - 72; PMID: 12055629
  • Triantafilou M, Miyake K, Golenbock DT, Triantafilou K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 2002; 115:2603 - 11; PMID: 12045230
  • Triantafilou M, Morath S, Mackie A, Hartung T, Triantafilou K. Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J Cell Sci 2004; 117:4007 - 14; http://dx.doi.org/10.1242/jcs.01270; PMID: 15286178
  • Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 2006; 125:943 - 55; http://dx.doi.org/10.1016/j.cell.2006.03.047; PMID: 16751103
  • Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 2008; 9:361 - 8; http://dx.doi.org/10.1038/ni1569; PMID: 18297073
  • Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S, Miyake K. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun 2008; 368:94 - 9; http://dx.doi.org/10.1016/j.bbrc.2008.01.061; PMID: 18222170
  • Husebye H, Halaas Ø, Stenmark H, Tunheim G, Sandanger Ø, Bogen B, Brech A, Latz E, Espevik T. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J 2006; 25:683 - 92; http://dx.doi.org/10.1038/sj.emboj.7600991; PMID: 16467847
  • Thieblemont N, Wright SD. Transport of bacterial lipopolysaccharide to the golgi apparatus. J Exp Med 1999; 190:523 - 34; http://dx.doi.org/10.1084/jem.190.4.523; PMID: 10449523
  • Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2011; 147:868 - 80; http://dx.doi.org/10.1016/j.cell.2011.09.051; PMID: 22078883
  • Aksoy E, Taboubi S, Torres D, Delbauve S, Hachani A, Whitehead MA, Pearce WP, Berenjeno IM, Nock G, Filloux A, et al. The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat Immunol 2012; 13:1045 - 54; http://dx.doi.org/10.1038/ni.2426; PMID: 23023391
  • Palsson-McDermott EM, Doyle SL, McGettrick AF, Hardy M, Husebye H, Banahan K, Gong M, Golenbock D, Espevik T, O’Neill LA. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol 2009; 10:579 - 86; http://dx.doi.org/10.1038/ni.1727; PMID: 19412184
  • Doyle SL, Husebye H, Connolly DJ, Espevik T, O’Neill LA, McGettrick AF. The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimulation. Nat Commun 2012; 3:707; http://dx.doi.org/10.1038/ncomms1706; PMID: 22426228
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10:513 - 25; http://dx.doi.org/10.1038/nrm2728; PMID: 19603039
  • Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C. Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 2010; 123:1480 - 91; http://dx.doi.org/10.1242/jcs.051474; PMID: 20375062
  • Wang Y, Chen T, Han C, He D, Liu H, An H, Cai Z, Cao X. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 2007; 110:962 - 71; http://dx.doi.org/10.1182/blood-2007-01-066027; PMID: 17395780
  • Wang D, Lou J, Ouyang C, Chen W, Liu Y, Liu X, Cao X, Wang J, Lu L. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci U S A 2010; 107:13806 - 11; http://dx.doi.org/10.1073/pnas.1009428107; PMID: 20643919
  • Husebye H, Aune MH, Stenvik J, Samstad E, Skjeldal F, Halaas O, Nilsen NJ, Stenmark H, Latz E, Lien E, et al. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 2010; 33:583 - 96; http://dx.doi.org/10.1016/j.immuni.2010.09.010; PMID: 20933442
  • Ferguson JS, Martin JL, Azad AK, McCarthy TR, Kang PB, Voelker DR, Crouch EC, Schlesinger LS. Surfactant protein D increases fusion of Mycobacterium tuberculosis-containing phagosomes with lysosomes in human macrophages. Infect Immun 2006; 74:7005 - 9; http://dx.doi.org/10.1128/IAI.01402-06; PMID: 17030585
  • Sawada K, Ariki S, Kojima T, Saito A, Yamazoe M, Nishitani C, Shimizu T, Takahashi M, Mitsuzawa H, Yokota S, et al. Pulmonary collectins protect macrophages against pore-forming activity of Legionella pneumophila and suppress its intracellular growth. J Biol Chem 2010; 285:8434 - 43; http://dx.doi.org/10.1074/jbc.M109.074765; PMID: 20056602
  • Sender V, Moulakakis C, Stamme C. Pulmonary surfactant protein A enhances endolysosomal trafficking in alveolar macrophages through regulation of Rab7. J Immunol 2011; 186:2397 - 411; http://dx.doi.org/10.4049/jimmunol.1002446; PMID: 21248257
  • Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YH, Wang H, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008; 133:235 - 49; http://dx.doi.org/10.1016/j.cell.2008.02.043; PMID: 18423196
  • Fan J, Kapus A, Marsden PA, Li YH, Oreopoulos G, Marshall JC, Frantz S, Kelly RA, Medzhitov R, Rotstein OD. Regulation of Toll-like receptor 4 expression in the lung following hemorrhagic shock and lipopolysaccharide. J Immunol 2002; 168:5252 - 9; http://dx.doi.org/10.4049/jimmunol.168.10.5252; PMID: 11994482
  • Oshikawa K, Sugiyama Y. Gene expression of Toll-like receptors and associated molecules induced by inflammatory stimuli in the primary alveolar macrophage. Biochem Biophys Res Commun 2003; 305:649 - 55; http://dx.doi.org/10.1016/S0006-291X(03)00837-4; PMID: 12763043
  • Punturieri A, Alviani RS, Polak T, Copper P, Sonstein J, Curtis JL. Specific engagement of TLR4 or TLR3 does not lead to IFN-beta-mediated innate signal amplification and STAT1 phosphorylation in resident murine alveolar macrophages. J Immunol 2004; 173:1033 - 42; http://dx.doi.org/10.4049/jimmunol.173.2.1033; PMID: 15240691
  • Saito T, Yamamoto T, Kazawa T, Gejyo H, Naito M. Expression of toll-like receptor 2 and 4 in lipopolysaccharide-induced lung injury in mouse. Cell Tissue Res 2005; 321:75 - 88; http://dx.doi.org/10.1007/s00441-005-1113-9; PMID: 15902499
  • Sender V, Lang L, Stamme C. Surfactant protein-A modulates LPS-induced TLR4 localization and signaling via β-arrestin 2. PLoS One 2013; 8:e59896; http://dx.doi.org/10.1371/journal.pone.0059896; PMID: 23536892
  • Hollingsworth JW, Chen BJ, Brass DM, Berman K, Gunn MD, Cook DN, Schwartz DA. The critical role of hematopoietic cells in lipopolysaccharide-induced airway inflammation. Am J Respir Crit Care Med 2005; 171:806 - 13; http://dx.doi.org/10.1164/rccm.200407-953OC; PMID: 15618460
  • Srivastava M, Jung S, Wilhelm J, Fink L, Bühling F, Welte T, Bohle RM, Seeger W, Lohmeyer J, Maus UA. The inflammatory versus constitutive trafficking of mononuclear phagocytes into the alveolar space of mice is associated with drastic changes in their gene expression profiles. J Immunol 2005; 175:1884 - 93; http://dx.doi.org/10.4049/jimmunol.175.3.1884; PMID: 16034132
  • Droemann D, Goldmann T, Tiedje T, Zabel P, Dalhoff K, Schaaf B. Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respir Res 2005; 6:68; http://dx.doi.org/10.1186/1465-9921-6-68; PMID: 16004610
  • Juarez E, Nuñez C, Sada E, Ellner JJ, Schwander SK, Torres M. Differential expression of Toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir Res 2010; 11:2; http://dx.doi.org/10.1186/1465-9921-11-2; PMID: 20051129
  • Thorley AJ, Grandolfo D, Lim E, Goldstraw P, Young A, Tetley TD. Innate immune responses to bacterial ligands in the peripheral human lung--role of alveolar epithelial TLR expression and signalling. PLoS One 2011; 6:e21827; http://dx.doi.org/10.1371/journal.pone.0021827; PMID: 21789185
  • Maris NA, Dessing MC, de Vos AF, Bresser P, van der Zee JS, Jansen HM, Spek CA, van der Poll T. Toll-like receptor mRNA levels in alveolar macrophages after inhalation of endotoxin. Eur Respir J 2006; 28:622 - 6; http://dx.doi.org/10.1183/09031936.06.00010806; PMID: 16946093
  • Hoogerwerf JJ, de Vos AF, van’t Veer C, Bresser P, de Boer A, Tanck MW, Draing C, van der Zee JS, van der Poll T. Priming of alveolar macrophages upon instillation of lipopolysaccharide in the human lung. Am J Respir Cell Mol Biol 2010; 42:349 - 56; http://dx.doi.org/10.1165/rcmb.2008-0362OC; PMID: 19448156
  • Wong MH, Chapin OC, Johnson MD. LPS-stimulated cytokine production in type I cells is modulated by the renin-angiotensin system. Am J Respir Cell Mol Biol 2012; 46:641 - 50; http://dx.doi.org/10.1165/rcmb.2011-0289OC; PMID: 22205632
  • Wong MH, Johnson MD. Differential response of primary alveolar type I and type II cells to LPS stimulation. PLoS One 2013; 8:e55545; http://dx.doi.org/10.1371/journal.pone.0055545; PMID: 23383221
  • Schulz C, Farkas L, Wolf K, Kratzel K, Eissner G, Pfeifer M. Differences in LPS-induced activation of bronchial epithelial cells (BEAS-2B) and type II-like pneumocytes (A-549). Scand J Immunol 2002; 56:294 - 302; http://dx.doi.org/10.1046/j.1365-3083.2002.01137.x; PMID: 12193231
  • Becker MN, Diamond G, Verghese MW, Randell SH. CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 2000; 275:29731 - 6; http://dx.doi.org/10.1074/jbc.M000184200; PMID: 10882713
  • Guillot L, Medjane S, Le-Barillec K, Balloy V, Danel C, Chignard M, Si-Tahar M. Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J Biol Chem 2004; 279:2712 - 8; http://dx.doi.org/10.1074/jbc.M305790200; PMID: 14600154
  • Armstrong L, Medford AR, Uppington KM, Robertson J, Witherden IR, Tetley TD, Millar AB. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am J Respir Cell Mol Biol 2004; 31:241 - 5; http://dx.doi.org/10.1165/rcmb.2004-0078OC; PMID: 15044215
  • Frey EA, Miller DS, Jahr TG, Sundan A, Bazil V, Espevik T, Finlay BB, Wright SD. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 1992; 176:1665 - 71; http://dx.doi.org/10.1084/jem.176.6.1665; PMID: 1281215
  • Henning LN, Azad AK, Parsa KV, Crowther JE, Tridandapani S, Schlesinger LS. Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol 2008; 180:7847 - 58; http://dx.doi.org/10.4049/jimmunol.180.12.7847; PMID: 18523248
  • Abate W, Alghaithy AA, Parton J, Jones KP, Jackson SK. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res 2010; 51:334 - 44; http://dx.doi.org/10.1194/jlr.M000513; PMID: 19648651
  • Kobayashi H, Nolan A, Naveed B, Hoshino Y, Segal LN, Fujita Y, Rom WN, Weiden MD. Neutrophils activate alveolar macrophages by producing caspase-6-mediated cleavage of IL-1 receptor-associated kinase-M. J Immunol 2011; 186:403 - 10; http://dx.doi.org/10.4049/jimmunol.1001906; PMID: 21098228
  • Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 2002; 418:443 - 7; http://dx.doi.org/10.1038/nature00888; PMID: 12140561
  • Deng JC, Cheng G, Newstead MW, Zeng X, Kobayashi K, Flavell RA, Standiford TJ. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J Clin Invest 2006; 116:2532 - 42; PMID: 16917541
  • Nguyen HA, Rajaram MV, Meyer DA, Schlesinger LS. Pulmonary surfactant protein A and surfactant lipids upregulate IRAK-M, a negative regulator of TLR-mediated inflammation in human macrophages. Am J Physiol Lung Cell Mol Physiol 2012; 303:L608 - 16; http://dx.doi.org/10.1152/ajplung.00067.2012; PMID: 22886503
  • Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 2006; 176:2455 - 64; http://dx.doi.org/10.4049/jimmunol.176.4.2455; PMID: 16456005
  • Shaykhiev R, Sierigk J, Herr C, Krasteva G, Kummer W, Bals R. The antimicrobial peptide cathelicidin enhances activation of lung epithelial cells by LPS. FASEB J 2010; 24:4756 - 66; http://dx.doi.org/10.1096/fj.09-151332; PMID: 20696857
  • Li D, Liu Y, Yang Y, Chen JH, Yang J, Zou LY, Tian ZQ, Lv J, Xia PY. Looped host defense peptide CLP-19 binds to microtubules and inhibits surface expression of TLR4 on mouse macrophages. J Immunol 2013; 190:6083 - 92; http://dx.doi.org/10.4049/jimmunol.1203167; PMID: 23667111
  • Suzuki M, Tachibana I, Takeda Y, He P, Minami S, Iwasaki T, Kida H, Goya S, Kijima T, Yoshida M, et al. Tetraspanin CD9 negatively regulates lipopolysaccharide-induced macrophage activation and lung inflammation. J Immunol 2009; 182:6485 - 93; http://dx.doi.org/10.4049/jimmunol.0802797; PMID: 19414803
  • Powers KA, Szászi K, Khadaroo RG, Tawadros PS, Marshall JC, Kapus A, Rotstein OD. Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J Exp Med 2006; 203:1951 - 61; http://dx.doi.org/10.1084/jem.20060943; PMID: 16847070
  • Kaksonen M, Toret CP, Drubin DG. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2006; 7:404 - 14; http://dx.doi.org/10.1038/nrm1940; PMID: 16723976
  • Ikeda K, Kundu RK, Ikeda S, Kobara M, Matsubara H, Quertermous T. Glia maturation factor-gamma is preferentially expressed in microvascular endothelial and inflammatory cells and modulates actin cytoskeleton reorganization. Circ Res 2006; 99:424 - 33; http://dx.doi.org/10.1161/01.RES.0000237662.23539.0b; PMID: 16873721
  • Aerbajinai W, Lee K, Chin K, Rodgers GP. Glia maturation factor-γ negatively modulates TLR4 signaling by facilitating TLR4 endocytic trafficking in macrophages. J Immunol 2013; 190:6093 - 103; http://dx.doi.org/10.4049/jimmunol.1203048; PMID: 23677465
  • Oldenburger A, Maarsingh H, Schmidt M. Multiple facets of cAMP signalling and physiological impact: cAMP compartmentalization in the lung. Pharmaceuticals (Basel) 2012; 5:1291 - 331; http://dx.doi.org/10.3390/ph5121291; PMID: 24281338
  • Cai W, Du A, Feng K, Zhao X, Qian L, Ostrom RS, Xu C. Adenylyl cyclase 6 activation negatively regulates TLR4 signaling through lipid raft-mediated endocytosis. J Immunol 2013; 191:6093 - 100; http://dx.doi.org/10.4049/jimmunol.1301912; PMID: 24218452
  • Ferwerda B, McCall MB, Alonso S, Giamarellos-Bourboulis EJ, Mouktaroudi M, Izagirre N, Syafruddin D, Kibiki G, Cristea T, Hijmans A, et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A 2007; 104:16645 - 50; http://dx.doi.org/10.1073/pnas.0704828104; PMID: 17925445
  • Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25:187 - 91; http://dx.doi.org/10.1038/76048; PMID: 10835634
  • Kumpf O, Giamarellos-Bourboulis EJ, Koch A, Hamann L, Mouktaroudi M, Oh DY, Latz E, Lorenz E, Schwartz DA, Ferwerda B, et al. Influence of genetic variations in TLR4 and TIRAP/Mal on the course of sepsis and pneumonia and cytokine release: an observational study in three cohorts. Crit Care 2010; 14:R103; http://dx.doi.org/10.1186/cc9047; PMID: 20525286
  • Ohto U, Yamakawa N, Akashi-Takamura S, Miyake K, Shimizu T. Structural analyses of human Toll-like receptor 4 polymorphisms D299G and T399I. J Biol Chem 2012; 287:40611 - 7; http://dx.doi.org/10.1074/jbc.M112.404608; PMID: 23055527
  • Figueroa L, Xiong Y, Song C, Piao W, Vogel SN, Medvedev AE. The Asp299Gly polymorphism alters TLR4 signaling by interfering with recruitment of MyD88 and TRIF. J Immunol 2012; 188:4506 - 15; http://dx.doi.org/10.4049/jimmunol.1200202; PMID: 22474023
  • Campodónico VL, Gadjeva M, Paradis-Bleau C, Uluer A, Pier GB. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med 2008; 14:120 - 33; http://dx.doi.org/10.1016/j.molmed.2008.01.002; PMID: 18262467
  • Bruscia EM, Zhang PX, Satoh A, Caputo C, Medzhitov R, Shenoy A, Egan ME, Krause DS. Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. J Immunol 2011; 186:6990 - 8; http://dx.doi.org/10.4049/jimmunol.1100396; PMID: 21593379
  • Kelly C, Canning P, Buchanan PJ, Williams MT, Brown V, Gruenert DC, Elborn JS, Ennis M, Schock BC. Toll-like receptor 4 is not targeted to the lysosome in cystic fibrosis airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 304:L371 - 82; http://dx.doi.org/10.1152/ajplung.00372.2011; PMID: 23316065
  • Hortal J, Muñoz P, Cuerpo G, Litvan H, Rosseel PM, Bouza E, European Study Group on Nosocomial Infections, European Workgroup of Cardiothoracic Intensivists. Ventilator-associated pneumonia in patients undergoing major heart surgery: an incidence study in Europe. Crit Care 2009; 13:R80; http://dx.doi.org/10.1186/cc7896; PMID: 19463176
  • Chalk K, Meisel C, Spies C, Volk T, Thuenemann K, Linneweber J, Wernecke KD, Sander M. Dysfunction of alveolar macrophages after 3 cardiac surgery and postoperative pneumonia? - an 5 observational study. Crit Care 2013; 17:R285; http://dx.doi.org/10.1186/cc13148; PMID: 24321282
  • Hatzidaki E, Nakos G, Galiatsou E, Lekka ME. Impaired phospholipases A₂production by stimulated macrophages from patients with acute respiratory distress syndrome. Biochim Biophys Acta 2010; 1802:986 - 94; http://dx.doi.org/10.1016/j.bbadis.2010.06.008; PMID: 20600872
  • Tang L, Li Q, Bai J, Zhang H, Lu Y, Ma S. Severe pneumonia mortality in elderly patients is associated with downregulation of Toll-like receptors 2 and 4 on monocytes. Am J Med Sci 2014; 347:34 - 41; http://dx.doi.org/10.1097/MAJ.0b013e3182798583; PMID: 23406892