956
Views
32
CrossRef citations to date
0
Altmetric
Review

Solute transporters in plant thylakoid membranes

Key players during photosynthesis and light stress

&
Pages 122-129 | Received 09 Dec 2009, Accepted 09 Dec 2009, Published online: 01 Mar 2010

References

  • Nelson N, Ben-Shem A. The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 2004; 5:971 - 982
  • Merchant S, Sawaya MR. The light reactions: a guide to recent acquisitions for the picture gallery. Plant Cell 2005; 217:648 - 663
  • Andersson B, Salter AH, Barber J. Molecular genetics of photosynthesis 1996; Oxford, UK IRL Press
  • Busch W, Saier MH Jr. The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 2002; 37:287 - 337
  • Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408:796 - 815
  • Weber AP, Schwacke R, Flügge UI. Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 2005; 56:133 - 164
  • Nagata T, Iizumi S, Satoh K, Kikuchi S. Comparative molecular biological analysis of membrane transport genes in organisms. Plant Mol Biol 2008; 66:565 - 585
  • Neuhaus HE, Wagner R. Solute pores, ion channels and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. Biochim Biophys Acta 2000; 1465:307 - 323
  • Duy D, Soll J, Philippar K. Solute channels of the outer membrane: from bacteria to chloroplasts. Biol Chem 2007; 388:879 - 889
  • Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Douce R, Joyard J. Proteomics of chloroplast envelope membranes. Photosynth Res 2003; 78:205 - 230
  • Schröder WP, Kieselbach T. Update on chloroplast proteomics. Photosynth Res 2003; 78:181 - 193
  • van Wijk KJ. Plastid proteomics. Plant Physiol Biochem 2004; 42:963 - 977
  • Ephritikhine G, Ferro M, Rolland N. Plant membrane proteomics. Plant Physiol Biochem 2004; 42:943 - 962
  • Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 2008; 3:1994
  • Barbier-Brygoo H, Gaymard F, Rolland N, Joyard J. Strategies to identify transport systems in plants. Trends Plant Sci 2001; 26:577 - 585
  • Junge W, Sielaff H, Engelbrecht S. Torque generation and elastic power transmission in the rotary F(0)F(1)-ATPase. Nature 2009; 459:364 - 370
  • Bosco CD, Lezhneva L, Biehl A, Leister D, Strotmann H, Wanner G, Meurer J. Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana. J Biol Chem 2004; 279:1060 - 1069
  • Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M. PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 2003; 15:1333 - 1346
  • Shingles R, Wimmers LE, McCarty RE. Copper transport across pea thylakoid membranes. Plant Physiol 2004; 135:145 - 151
  • Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, et al. HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 2006; 281:2882 - 2892
  • Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 2005; 17:1233 - 1251
  • Bernal M, Testillano PS, Alfonso M, del Carmen Risueño M, Picorel R, Yruela I. Identification and subcellular localization of the soybean copper P1BATPase GmHMA8 transporter. J Struct Biol 2007; 158:46 - 58
  • De Angeli A, Thomine S, Frachisse JM, Ephritikhine G, Gambale F, Barbier-Brygoo H. Anion channels and transporters in plant cell membranes. FEBS Lett 2007; 581:2367 - 2374
  • Schönknecht G, Hedrich R, Junge W, Raschke K. A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 1988; 336:589 - 592
  • Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 1996; 271:33632 - 33638
  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H. Review. CLC-mediated anion transport in plant cells. Philos Trans R Soc Lond B Biol Sci 2009; 364:195 - 201
  • Geelen D, Lurin C, Bouchez D, Frachisse JM, Levievre F, Courtial B, et al. Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J 2000; 21:259 - 267
  • De Angeli A, Moran O, Wege S, Filleur S, Ephritikhine G, Thomine S, et al. ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J Biol Chem 2009; 284:26526 - 26532
  • Marmagne A, Vinauger-Douard M, Monachello D, et al. Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. J Exp Bot 2007; 58:3385 - 3393
  • Monachello D, Allot M, Oliva S, Krapp A, et al. Two anion transporters AtClCa and AtClCe fulfill interconnecting but not redundant roles in nitrate assimilation pathways. New Phytol 2009; 183:88 - 94
  • Sugiura M, Georgescu MN, Takahashi M. A nitrite transporter associated with nitrite uptake by higher plant chloroplasts. Plant Cell Physiol 2007; 48:1022 - 1035
  • Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta 2002; 216:23 - 37
  • Knappe S, Flügge UI, Fischer K. Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site. Plant Physiol 2003; 131:1178 - 1190
  • Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol 2008; 177:889 - 898
  • Ruiz Pavón L, Lundh F, Lundin B, Mishra A, Persson BL, Spetea C. Arabidopsis ANTR1 is a thylakoid Na+-dependent phosphate transporter: functional characterization in Escherichia coli. J Biol Chem 2008; 283:13520 - 13527
  • Roth C, Menzel G, Petétot JM, Rochat-Hacker S, Poirier Y. Characterization of a protein of the plastid inner envelope having homology to animal inorganic phosphate, chloride and organic-anion transporters. Planta 2005; 218:406 - 416
  • Guo B, Irigoyen S, Fowler TB, Versaw WK. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signal Behav 2008; 3:784 - 790
  • Tsunekawa K, Shijuku T, Hayashimoto M, Kojima Y, Onai K, Morishita M, et al. Identification and characterization of the Na+/H+ antiporter Nhas3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 2009; 284:16513 - 16521
  • Spetea C, Thuswaldner S. Schoefs B. Update in nucleotidedependent processes in plant chloroplasts. Plant Cell Compartments—Selected Topics 2008; Kerala Research Signpost 105 - 149
  • Reiser J, Linka N, Lemke L, Jeblick W, Neuhaus HE. Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabidopsis. Plant Physiol 2004; 136:3524 - 3536
  • Laloi M. Plant mitochondrial carriers: an overview. Cell Mol Life Sci 1999; 56:918 - 944
  • Picault N, Hodges M, Palmieri L, Palmieri F. The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 2004; 9:138 - 146
  • Spetea C, Hundal T, Lundin B, Heddad M, Adamska I, Andersson B. Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 2004; 101:1409 - 1414
  • Thuswaldner S, Lagerstedt JO, Rojas-Stütz M, Bouhidel K, Der C, Leborgne-Castel N, et al. Identification, expression and functional analyses of a thylakoid ATP/ADP carrier from Arabidopsis. J Biol Chem 2007; 282:8848 - 8859
  • Ruban AV. Plants in light. Commun Integr Biol 2009; 2:50 - 55
  • Pesaresi P, Hertle A, Pribil M, Schneider A, Kleine T, Leister D. Optimizing photosynthesis under fluctuating light: The role of the Arabidopsis STN7 kinase. Plant Signal Behav 2010; 5:20 - 24
  • Powles SB. Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 1984; 35:15 - 44
  • Vass I, Cser K, Cheregi O. Molecular mechanisms of light stress of photosynthesis. Ann N Y Acad Sci 2007; 1113:114 - 122
  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 2007; 1767:414 - 421
  • Ohad I, Kyle DJ, Arntzen CJ. Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol 1984; 99:481 - 485
  • Aro EM, Virgin I, Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1993; 1143:113 - 134
  • Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, et al. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 2005; 56:347 - 356
  • Spetea C, Hundal T, Lohmann F, Andersson B. GTP bound to chloroplast thylakoid membranes is required for light-induced, multienzyme degradation of the photosystem II D1 protein. Proc Natl Acad Sci USA 1999; 96:6547 - 6552
  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 2000; 12:419 - 431
  • Haussühl K, Andersson B, Adamska I. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 2001; 20:713 - 722
  • Silva P, Thompson E, Bailey S, Kruse O, Mullineaux CW, Robinson C, et al. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803. Plant Cell 2003; 15:2152 - 2164
  • Kapri-Pardes E, Naveh L, Adam Z. The thylakoid lumen protease Deg1 is involved in the repair of photosystem II from photoinhibition in Arabidopsis. Plant Cell 2007; 19:1039 - 1047
  • Tikkanen M, Nurmi M, Kangasjärvi S, Aro EM. Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim Biophys Acta 2008; 1777:1432 - 1437
  • Lundin B, Thuswaldner S, Shutova T, Eshaghi S, Samuelsson G, Barber J, et al. Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. Biochim Biophys Acta 2007; 1767:500 - 508
  • Lundin B, Nurmi M, Rojas-Stuetz M, Aro EM, Adamska I, Spetea C. Towards understanding the functional difference between the two PsbO isoforms in Arabidopsis thaliana-insights from phenotypic analyses of psbo knockout mutants. Photosynth Res 2008; 98:405 - 414
  • Lundin B, Hansson M, Schoefs B, Vener AV, Spetea C. The Arabidopsis PsbO2 protein regulates dephosphorylation and turnover of the photosystem II reaction centre D1 protein. Plant J 2007; 49:528 - 539
  • Allahverdiyeva Y, Mamedov F, Holmström M, Nurmi M, Lundin B, Styring S, et al. Comparison of the electron transport properties of the psbo1 and psbo2 mutants of Arabidopsis thaliana. Biochim Biophys Acta 2009; 1787:1230 - 1237
  • Gropp T, Brustovetsky N, Klingenberg M, Müller V, Fendler K, Bamberg E. Kinetics of electrogenic transport by the ADP/ATP carrier. Biophys J 1999; 177:714 - 726
  • Bacconi A, Virkki LV, Biber J, Murer H, Forster IC. Renouncing electroneutrality is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc Natl Acad Sci USA 2005; 102:12606 - 12611
  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Architecture of the photosynthetic oxygenevolving center. Science 2004; 303:1831 - 1838
  • Bartsevich VV, Pakrasi HB. Manganese transport in the cyanobacterium Synechocystis sp PCC 6803. J Biol Chem 1996; 271:26057 - 26061
  • Ettinger WF, Clear AM, Fanning KJ, Peck ML. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol 1999; 119:1379 - 1386
  • Krause GH. Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim Biophys Acta 1977; 460:500 - 510
  • Tester M, Blatt MR. Direct measurement of K channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant Physiol 1989; 91:249 - 252
  • Fang Z, Mi F, Berkowitz GA. Molecular and physiological analysis of a thylakoid K+ channel protein. Plant Physiol 1995; 108:1725 - 1734
  • Pottosin II, Schönknecht G. Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J Membr Biol 1996; 152:223 - 233
  • Segalla A, Szabo I, Costantini P, Giacometti GM. Study of the effect of ion channel modulators on photosynthetic oxygen evolution. J Chem Inf Model 2005; 245:1691 - 1700
  • Smirnoff N. Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond B Biol Sci 2000; 355:1455 - 1464
  • Foyer CH, Lelandais M. A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasma membranes of pea leaf mesophyll cells. J Plant Physiol 1996; 148:391 - 398
  • Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, et al. Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 2002; 14:211 - 236
  • Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T. Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 2002; 277:8354 - 8365
  • Shipman RL, Inoue K. Suborganellar localization of plastidic type I signal peptidase 1 depends on chloroplast development. FEBS Lett 2009; 583:938 - 942
  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 2003; 425:734 - 737
  • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R. Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 2008; 20:648 - 657
  • Villarejo A, Shutova T, Moskvin O, Forssén M, Klimov VV, Samuelsson G. A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. EMBO J 2008; 21:1930 - 1938
  • Shutova T, Kenneweg H, Buchta J, Nikitina J, Terentyev V, Chernyshov S, et al. The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 2008; 27:782 - 791
  • Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3-transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 2009; 106:5990 - 5995