567
Views
7
CrossRef citations to date
0
Altmetric
Review

PAK in pathogen-host interactions

&
Pages 126-131 | Published online: 16 Sep 2012

References

  • Muratori C, Cavallin LE, Krätzel K, Tinari A, De Milito A, Fais S, et al. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 2009; 6:218 - 30; http://dx.doi.org/10.1016/j.chom.2009.06.009; PMID: 19748464
  • Mangino G, Percario ZA, Fiorucci G, Vaccari G, Manrique S, Romeo G, et al. In vitro treatment of human monocytes/macrophages with myristoylated recombinant Nef of human immunodeficiency virus type 1 leads to the activation of mitogen-activated protein kinases, IkappaB kinases, and interferon regulatory factor 3 and to the release of beta interferon. J Virol 2007; 81:2777 - 91; http://dx.doi.org/10.1128/JVI.01640-06; PMID: 17182689
  • Izoreá T, Job V, Dessen A. Biogenesis, regulation, and targeting of the type III secretion system. Structure 2011; 19:603 - 12; http://dx.doi.org/10.1016/j.str.2011.03.015; PMID: 21565695
  • Voth DE, Broederdorf LJ, Graham JG. Bacterial Type IV secretion systems: versatile virulence machines. Future Microbiol 2012; 7:241 - 57; http://dx.doi.org/10.2217/fmb.11.150; PMID: 22324993
  • Adkins I, Schulz S, Borgmann S, Autenrieth IB, Gröbner S. Differential roles of Yersinia outer protein P-mediated inhibition of nuclear factor-kappa B in the induction of cell death in dendritic cells and macrophages. J Med Microbiol 2008; 57:139 - 44; http://dx.doi.org/10.1099/jmm.0.47437-0; PMID: 18201977
  • Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 1998; 280:734 - 7; http://dx.doi.org/10.1126/science.280.5364.734; PMID: 9563949
  • Singh AP, Buscaglia CA, Wang Q, Levay A, Nussenzweig DR, Walker JR, et al. Plasmodium circumsporozoite protein promotes the development of the liver stages of the parasite. Cell 2007; 131:492 - 504; http://dx.doi.org/10.1016/j.cell.2007.09.013; PMID: 17981117
  • van de Sand C, Horstmann S, Schmidt A, Sturm A, Bolte S, Krueger A, et al. The liver stage of Plasmodium berghei inhibits host cell apoptosis. Mol Microbiol 2005; 58:731 - 42; http://dx.doi.org/10.1111/j.1365-2958.2005.04888.x; PMID: 16238623
  • Prudêncio M, Rodrigues CD, Hannus M, Martin C, Real E, Gonçalves LA, et al. Kinome-wide RNAi screen implicates at least 5 host hepatocyte kinases in Plasmodium sporozoite infection. PLoS Pathog 2008; 4:e1000201; http://dx.doi.org/10.1371/journal.ppat.1000201; PMID: 18989463
  • Haldar K, Mohandas N. Erythrocyte remodeling by malaria parasites. Curr Opin Hematol 2007; 14:203 - 9; http://dx.doi.org/10.1097/MOH.0b013e3280f31b2d; PMID: 17414208
  • Buffet PA, Safeukui I, Deplaine G, Brousse V, Prendki V, Thellier M, et al. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood 2011; 117:381 - 92; http://dx.doi.org/10.1182/blood-2010-04-202911; PMID: 20852127
  • de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, et al. A newly discovered protein export machine in malaria parasites. Nature 2009; 459:945 - 9; http://dx.doi.org/10.1038/nature08104; PMID: 19536257
  • Scherf A, Lopez-Rubio JJ, Riviere L. Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol 2008; 62:445 - 70; http://dx.doi.org/10.1146/annurev.micro.61.080706.093134; PMID: 18785843
  • Koncarevic S, Rohrbach P, Deponte M, Krohne G, Prieto JH, Yates J 3rd, et al. The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci U S A 2009; 106:13323 - 8; http://dx.doi.org/10.1073/pnas.0905387106; PMID: 19666612
  • Harrison T, Samuel BU, Akompong T, Hamm H, Mohandas N, Lomasney JW, et al. Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 2003; 301:1734 - 6; http://dx.doi.org/10.1126/science.1089324; PMID: 14500986
  • Murphy SC, Harrison T, Hamm HE, Lomasney JW, Mohandas N, Haldar K. Erythrocyte G protein as a novel target for malarial chemotherapy. PLoS Med 2006; 3:e528; http://dx.doi.org/10.1371/journal.pmed.0030528; PMID: 17194200
  • Hall BS, Daramola OO, Barden G, Targett GA. Modulation of protein kinase C activity in Plasmodium falciparum-infected erythrocytes. Blood 1997; 89:1770 - 8; PMID: 9057662
  • Sicard A, Semblat JP, Doerig C, Hamelin R, Moniatte M, Dorin-Semblat D, et al. Activation of a PAK-MEK signalling pathway in malaria parasite-infected erythrocytes. Cell Microbiol 2011; 13:836 - 45; http://dx.doi.org/10.1111/j.1462-5822.2011.01582.x; PMID: 21371233
  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419:498 - 511; http://dx.doi.org/10.1038/nature01097; PMID: 12368864
  • Ward P, Equinet L, Packer J, Doerig C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 2004; 5:79; http://dx.doi.org/10.1186/1471-2164-5-79; PMID: 15479470
  • Anamika SN, Srinivasan N, Krupa A. A genomic perspective of protein kinases in Plasmodium falciparum. Proteins 2005; 58:180 - 9; http://dx.doi.org/10.1002/prot.20278; PMID: 15515182
  • Park ER, Eblen ST, Catling AD. MEK1 activation by PAK: a novel mechanism. Cell Signal 2007; 19:1488 - 96; http://dx.doi.org/10.1016/j.cellsig.2007.01.018; PMID: 17314031
  • Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB, et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol 2003; 162:281 - 91; http://dx.doi.org/10.1083/jcb.200212141; PMID: 12876277
  • Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 2008; 15:322 - 31; http://dx.doi.org/10.1016/j.chembiol.2008.03.005; PMID: 18420139
  • Staines HM, Ellory JC, Chibale K. The new permeability pathways: targets and selective routes for the development of new antimalarial agents. Comb Chem High Throughput Screen 2005; 8:81 - 8; http://dx.doi.org/10.2174/1386207053328138; PMID: 15720199
  • Stolarczyk EI, Reiling CJ, Paumi CM. Regulation of ABC transporter function via phosphorylation by protein kinases. Curr Pharm Biotechnol 2011; 12:621 - 35; http://dx.doi.org/10.2174/138920111795164075; PMID: 21118091
  • Chan PM, Manser E. PAKs in human disease. Prog Mol Biol Transl Sci 2012; 106:171 - 87; http://dx.doi.org/10.1016/B978-0-12-396456-4.00011-0; PMID: 22340718
  • Lu X, Wu X, Plemenitas A, Yu H, Sawai ET, Abo A, et al. CDC42 and Rac1 are implicated in the activation of the Nef-associated kinase and replication of HIV-1. Curr Biol 1996; 6:1677 - 84; http://dx.doi.org/10.1016/S0960-9822(02)70792-6; PMID: 8994833
  • Arora VK, Molina RP, Foster JL, Blakemore JL, Chernoff J, Fredericksen BL, et al. Lentivirus Nef specifically activates Pak2. J Virol 2000; 74:11081 - 7; http://dx.doi.org/10.1128/JVI.74.23.11081-11087.2000; PMID: 11070003
  • Sibony M, Jones NL. Recent advances in Helicobacter pylori pathogenesis. Curr Opin Gastroenterol 2012; 28:30 - 5; http://dx.doi.org/10.1097/MOG.0b013e32834dda51; PMID: 22157439
  • Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 2006; 19:449 - 90; http://dx.doi.org/10.1128/CMR.00054-05; PMID: 16847081
  • Liu Z, Xu X, Chen L, Li W, Sun Y, Zeng J, et al. Helicobacter pylori CagA inhibits the expression of Runx3 via Src/MEK/ERK and p38 MAPK pathways in gastric epithelial cell. J Cell Biochem 2012; 113:1080 - 6; http://dx.doi.org/10.1002/jcb.23440; PMID: 22266963
  • Baek HY, Lim JW, Kim H. Interaction between the Helicobacter pylori CagA and alpha-Pix in gastric epithelial AGS cells. Ann N Y Acad Sci 2007; 1096:18 - 23; http://dx.doi.org/10.1196/annals.1397.065; PMID: 17405911
  • Cunningham AL, Donaghy H, Harman AN, Kim M, Turville SG. Manipulation of dendritic cell function by viruses. Curr Opin Microbiol 2010; 13:524 - 9; http://dx.doi.org/10.1016/j.mib.2010.06.002; PMID: 20598938
  • Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 1999; 96:14559 - 64; http://dx.doi.org/10.1073/pnas.96.25.14559; PMID: 10588744
  • Churin Y, Kardalinou E, Meyer TF, Naumann M. Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection. Mol Microbiol 2001; 40:815 - 23; http://dx.doi.org/10.1046/j.1365-2958.2001.02443.x; PMID: 11401689
  • Krautkrämer E, Giese SI, Gasteier JE, Muranyi W, Fackler OT. Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J Virol 2004; 78:4085 - 97; http://dx.doi.org/10.1128/JVI.78.8.4085-4097.2004; PMID: 15047825
  • Lim JW, Kim KH, Kim H. alphaPix interacts with Helicobacter pylori CagA to induce IL-8 expression in gastric epithelial cells. Scand J Gastroenterol 2009; 44:1166 - 72; http://dx.doi.org/10.1080/00365520903144398; PMID: 19672789
  • Basak C, Pathak SK, Bhattacharyya A, Mandal D, Pathak S, Kundu M. NF-kappaB- and C/EBPbeta-driven interleukin-1beta gene expression and PAK1-mediated caspase-1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide-stimulated macrophages. J Biol Chem 2005; 280:4279 - 88; http://dx.doi.org/10.1074/jbc.M412820200; PMID: 15561713
  • Hassett DJ, Sutton MD, Schurr MJ, Herr AB, Caldwell CC, Matu JO. Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol 2009; 17:130 - 8; http://dx.doi.org/10.1016/j.tim.2008.12.003; PMID: 19231190
  • Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, et al. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 1996; 271:64 - 7; http://dx.doi.org/10.1126/science.271.5245.64; PMID: 8539601
  • Plotkowski MC, de Bentzmann S, Pereira SH, Zahm JM, Bajolet-Laudinat O, Roger P, et al. Pseudomonas aeruginosa internalization by human epithelial respiratory cells depends on cell differentiation, polarity, and junctional complex integrity. Am J Respir Cell Mol Biol 1999; 20:880 - 90; PMID: 10226058
  • Filloux A. Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function. Front Microbiol 2011; 2:155; http://dx.doi.org/10.3389/fmicb.2011.00155; PMID: 21811488
  • Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 1999; 274:36369 - 72; http://dx.doi.org/10.1074/jbc.274.51.36369; PMID: 10593930
  • Krall R, Schmidt G, Aktories K, Barbieri JT. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 2000; 68:6066 - 8; http://dx.doi.org/10.1128/IAI.68.10.6066-6068.2000; PMID: 10992524
  • Kazmierczak BI, Engel JN. Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RhoA, Rac1, and Cdc42. Infect Immun 2002; 70:2198 - 205; http://dx.doi.org/10.1128/IAI.70.4.2198-2205.2002; PMID: 11895987
  • Pielage JF, Powell KR, Kalman D, Engel JN. RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization. PLoS Pathog 2008; 4:e1000031; http://dx.doi.org/10.1371/journal.ppat.1000031; PMID: 18369477
  • Kazmierczak BI, Mostov K, Engel JN. Epithelial cell polarity alters Rho-GTPase responses to Pseudomonas aeruginosa. Mol Biol Cell 2004; 15:411 - 9; http://dx.doi.org/10.1091/mbc.E03-08-0559; PMID: 14595106
  • Zegers MM, Forget MA, Chernoff J, Mostov KE, ter Beest MB, Hansen SH. Pak1 and PIX regulate contact inhibition during epithelial wound healing. EMBO J 2003; 22:4155 - 65; http://dx.doi.org/10.1093/emboj/cdg398; PMID: 12912914
  • Foster JL, Garcia JV. HIV-1 Nef: at the crossroads. Retrovirology 2008; 5:84; http://dx.doi.org/10.1186/1742-4690-5-84; PMID: 18808677
  • Sawai ET, Baur A, Struble H, Peterlin BM, Levy JA, Cheng-Mayer C. Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci U S A 1994; 91:1539 - 43; http://dx.doi.org/10.1073/pnas.91.4.1539; PMID: 8108442
  • Nunn MF, Marsh JW. Human immunodeficiency virus type 1 Nef associates with a member of the p21-activated kinase family. J Virol 1996; 70:6157 - 61; PMID: 8709241
  • Sawai ET, Khan IH, Montbriand PM, Peterlin BM, Cheng-Mayer C, Luciw PA. Activation of PAK by HIV and SIV Nef: importance for AIDS in rhesus macaques. Curr Biol 1996; 6:1519 - 27; http://dx.doi.org/10.1016/S0960-9822(96)00757-9; PMID: 8939608
  • Wolf D, Witte V, Laffert B, Blume K, Stromer E, Trapp S, et al. HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med 2001; 7:1217 - 24; http://dx.doi.org/10.1038/nm1101-1217; PMID: 11689886
  • Hekman M, Albert S, Galmiche A, Rennefahrt UE, Fueller J, Fischer A, et al. Reversible membrane interaction of BAD requires two C-terminal lipid binding domains in conjunction with 14-3-3 protein binding. J Biol Chem 2006; 281:17321 - 36; http://dx.doi.org/10.1074/jbc.M600292200; PMID: 16603546
  • Aylloán V, Fleischer A, Cayla X, Garciáa A, Rebollo A. Segregation of Bad from lipid rafts is implicated in the induction of apoptosis. J Immunol 2002; 168:3387 - 93; PMID: 11907096
  • Polzien L, Baljuls A, Roth HM, Kuper J, Benz R, Schweimer K, et al. Pore-forming activity of BAD is regulated by specific phosphorylation and structural transitions of the C-terminal part. Biochim Biophys Acta 2011; 1810:162 - 9; http://dx.doi.org/10.1016/j.bbagen.2010.11.002; PMID: 21081150
  • Rapp UR, Fischer A, Rennefahrt UE, Hekman M, Albert S. BAD association with membranes is regulated by Raf kinases and association with 14-3-3 proteins. Adv Enzyme Regul 2007; 47:281 - 5; http://dx.doi.org/10.1016/j.advenzreg.2006.12.006; PMID: 17336370
  • Renkema GH, Manninen A, Mann DA, Harris M, Saksela K. Identification of the Nef-associated kinase as p21-activated kinase 2. Curr Biol 1999; 9:1407 - 10; http://dx.doi.org/10.1016/S0960-9822(00)80086-X; PMID: 10607567
  • Nguyen DG, Wolff KC, Yin H, Caldwell JS, Kuhen KL. “UnPAKing” human immunodeficiency virus (HIV) replication: using small interfering RNA screening to identify novel cofactors and elucidate the role of group I PAKs in HIV infection. J Virol 2006; 80:130 - 7; http://dx.doi.org/10.1128/JVI.80.1.130-137.2006; PMID: 16352537
  • Xu JW, Ikeda K, Kobayakawa A, Ikami T, Kayano Y, Mitani T, et al. Downregulation of Rac1 activation by caffeic acid in aortic smooth muscle cells. Life Sci 2005; 76:2861 - 72; http://dx.doi.org/10.1016/j.lfs.2004.11.015; PMID: 15808886
  • Demestre M, Messerli SM, Celli N, Shahhossini M, Kluwe L, Mautner V, et al. CAPE (caffeic acid phenethyl ester)-based propolis extract (Bio 30) suppresses the growth of human neurofibromatosis (NF) tumor xenografts in mice. Phytother Res 2009; 23:226 - 30; http://dx.doi.org/10.1002/ptr.2594; PMID: 18726924
  • Messerli SM, Ahn MR, Kunimasa K, Yanagihara M, Tatefuji T, Hashimoto K, et al. Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytother Res 2009; 23:423 - 7; http://dx.doi.org/10.1002/ptr.2658; PMID: 19003952
  • Pascua PN, Lee JH, Song MS, Park SJ, Baek YH, Ann BH, et al. Role of the p21-activated kinases (PAKs) in influenza A virus replication. Biochem Biophys Res Commun 2011; 414:569 - 74; http://dx.doi.org/10.1016/j.bbrc.2011.09.119; PMID: 21982772