827
Views
13
CrossRef citations to date
0
Altmetric
Review

EHDs meet the retromer

Complex regulation of retrograde transport

, &
Pages 161-165 | Published online: 30 Sep 2012

References

  • Platta HW, Stenmark H. Endocytosis and signaling. Curr Opin Cell Biol 2011; 23:393 - 403; http://dx.doi.org/10.1016/j.ceb.2011.03.008; PMID: 21474295
  • Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 2009; 10:609 - 22; http://dx.doi.org/10.1038/nrm2748; PMID: 19696798
  • Johannes L, Decaudin D. Protein toxins: intracellular trafficking for targeted therapy. Gene Ther 2005; 12:1360 - 8; http://dx.doi.org/10.1038/sj.gt.3302557; PMID: 15902276
  • Sandvig K, van Deurs B. Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J 2000; 19:5943 - 50; http://dx.doi.org/10.1093/emboj/19.22.5943; PMID: 11080141
  • Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 2006; 103:11821 - 7; http://dx.doi.org/10.1073/pnas.0601617103; PMID: 16882731
  • Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011; 91:119 - 49; http://dx.doi.org/10.1152/physrev.00059.2009; PMID: 21248164
  • Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 2004; 5:886 - 96; http://dx.doi.org/10.1038/nrm1500; PMID: 15520808
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10:513 - 25; http://dx.doi.org/10.1038/nrm2728; PMID: 19603039
  • Jahn R, Scheller RH. SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 2006; 7:631 - 43; http://dx.doi.org/10.1038/nrm2002; PMID: 16912714
  • Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009; 323:474 - 7; http://dx.doi.org/10.1126/science.1161748; PMID: 19164740
  • Grant BD, Caplan S. Mechanisms of EHD/RME-1 protein function in endocytic transport. Traffic 2008; 9:2043 - 52; http://dx.doi.org/10.1111/j.1600-0854.2008.00834.x; PMID: 18801062
  • Naslavsky N, Caplan S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol 2011; 21:122 - 31; http://dx.doi.org/10.1016/j.tcb.2010.10.003; PMID: 21067929
  • McKenzie JE, Raisley B, Zhou X, Naslavsky N, Taguchi T, Caplan S, et al. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi. Traffic 2012; 13:1140 - 59; http://dx.doi.org/10.1111/j.1600-0854.2012.01374.x; PMID: 22540229
  • McLauchlan H, Newell J, Morrice N, Osborne A, West M, Smythe E. A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr Biol 1998; 8:34 - 45; http://dx.doi.org/10.1016/S0960-9822(98)70018-1; PMID: 9427626
  • Echard A, Jollivet F, Martinez O, Lacapère JJ, Rousselet A, Janoueix-Lerosey I, et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 1998; 279:580 - 5; http://dx.doi.org/10.1126/science.279.5350.580; PMID: 9438855
  • Roland JT, Kenworthy AK, Peranen J, Caplan S, Goldenring JR. Myosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3. Mol Biol Cell 2007; 18:2828 - 37; http://dx.doi.org/10.1091/mbc.E07-02-0169; PMID: 17507647
  • Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, et al. Identification of an organelle receptor for myosin-Va. Nat Cell Biol 2002; 4:271 - 8; http://dx.doi.org/10.1038/ncb760; PMID: 11887186
  • Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M, et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 2000; 151:601 - 12; http://dx.doi.org/10.1083/jcb.151.3.601; PMID: 11062261
  • Simonsen A, Lippé R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 1998; 394:494 - 8; http://dx.doi.org/10.1038/28879; PMID: 9697774
  • McBride HM, Rybin V, Murphy C, Giner A, Teasdale R, Zerial M. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 1999; 98:377 - 86; http://dx.doi.org/10.1016/S0092-8674(00)81966-2; PMID: 10458612
  • Simonsen A, Gaullier JM, D’Arrigo A, Stenmark H. The Rab5 effector EEA1 interacts directly with syntaxin-6. J Biol Chem 1999; 274:28857 - 60; http://dx.doi.org/10.1074/jbc.274.41.28857; PMID: 10506127
  • Zhang J, Naslavsky N, Caplan S. Rabs and EHDs: alternate modes for traffic control. Biosci Rep 2012; 32:17 - 23; http://dx.doi.org/10.1042/BSR20110009; PMID: 21981138
  • Daumke O, Lundmark R, Vallis Y, Martens S, Butler PJ, McMahon HT. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 2007; 449:923 - 7; http://dx.doi.org/10.1038/nature06173; PMID: 17914359
  • Jakobsson J, Ackermann F, Andersson F, Larhammar D, Löw P, Brodin L. Regulation of synaptic vesicle budding and dynamin function by an EHD ATPase. J Neurosci 2011; 31:13972 - 80; http://dx.doi.org/10.1523/JNEUROSCI.1289-11.2011; PMID: 21957258
  • Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 2009; 11:1399 - 410; http://dx.doi.org/10.1038/ncb1986; PMID: 19915558
  • Bonifacino JS, Rojas R. Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 2006; 7:568 - 79; http://dx.doi.org/10.1038/nrm1985; PMID: 16936697
  • Johannes L, Popoff V. Tracing the retrograde route in protein trafficking. Cell 2008; 135:1175 - 87; http://dx.doi.org/10.1016/j.cell.2008.12.009; PMID: 19109890
  • Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 2004; 165:123 - 33; http://dx.doi.org/10.1083/jcb.200312055; PMID: 15078903
  • Naslavsky N, McKenzie J, Altan-Bonnet N, Sheff D, Caplan S. EHD3 regulates early-endosome-to-Golgi transport and preserves Golgi morphology. J Cell Sci 2009; 122:389 - 400; http://dx.doi.org/10.1242/jcs.037051; PMID: 19139087
  • Seaman MN. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 2004; 165:111 - 22; http://dx.doi.org/10.1083/jcb.200312034; PMID: 15078902
  • Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, et al. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 2008; 14:120 - 31; http://dx.doi.org/10.1016/j.devcel.2007.12.003; PMID: 18160348
  • Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol 2008; 10:170 - 7; http://dx.doi.org/10.1038/ncb1678; PMID: 18193037
  • Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 2011; 13:914 - 23; http://dx.doi.org/10.1038/ncb2281; PMID: 21725319
  • Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga G. C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell 2008; 14:132 - 9; http://dx.doi.org/10.1016/j.devcel.2007.12.001; PMID: 18160346
  • Port F, Kuster M, Herr P, Furger E, Bänziger C, Hausmann G, et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol 2008; 10:178 - 85; http://dx.doi.org/10.1038/ncb1687; PMID: 18193032
  • Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell 2008; 14:140 - 7; http://dx.doi.org/10.1016/j.devcel.2007.12.004; PMID: 18160347
  • Burd CG. Physiology and pathology of endosome-to-Golgi retrograde sorting. Traffic 2011; 12:948 - 55; http://dx.doi.org/10.1111/j.1600-0854.2011.01188.x; PMID: 21382144
  • Saint-Pol A, Yélamos B, Amessou M, Mills IG, Dugast M, Tenza D, et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev Cell 2004; 6:525 - 38; http://dx.doi.org/10.1016/S1534-5807(04)00100-5; PMID: 15068792
  • Meyer C, Zizioli D, Lausmann S, Eskelinen EL, Hamann J, Saftig P, et al. mu1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J 2000; 19:2193 - 203; http://dx.doi.org/10.1093/emboj/19.10.2193; PMID: 10811610
  • Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 2005; 16:3467 - 79; http://dx.doi.org/10.1091/mbc.E05-02-0120; PMID: 15917292
  • Scott GK, Fei H, Thomas L, Medigeshi GR, Thomas GA. A PACS-1, GGA3 and CK2 complex regulates CI-MPR trafficking. EMBO J 2006; 25:4423 - 35; http://dx.doi.org/10.1038/sj.emboj.7601336; PMID: 16977309
  • Carroll KS, Hanna J, Simon I, Krise J, Barbero P, Pfeffer SR. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 2001; 292:1373 - 6; http://dx.doi.org/10.1126/science.1056791; PMID: 11359012
  • Díaz E, Pfeffer SR. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 1998; 93:433 - 43; http://dx.doi.org/10.1016/S0092-8674(00)81171-X; PMID: 9590177
  • Haft CR, de la Luz Sierra M, Barr VA, Haft DH, Taylor SI. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol Cell Biol 1998; 18:7278 - 87; PMID: 9819414
  • Xu Y, Hortsman H, Seet L, Wong SH, Hong W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat Cell Biol 2001; 3:658 - 66; http://dx.doi.org/10.1038/35083051; PMID: 11433298
  • Zhang P, Wu Y, Belenkaya TY, Lin X. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res 2011; 21:1677 - 90; http://dx.doi.org/10.1038/cr.2011.167; PMID: 22041890
  • Zhou CZ, Li de La Sierra-Gallay I, Quevillon-Cheruel S, Collinet B, Minard P, Blondeau K, et al. Crystal structure of the yeast Phox homology (PX) domain protein Grd19p complexed to phosphatidylinositol-3-phosphate. J Biol Chem 2003; 278:50371 - 6; http://dx.doi.org/10.1074/jbc.M304392200; PMID: 14514667
  • Bonifacino JS, Hurley JH. Retromer. Curr Opin Cell Biol 2008; 20:427 - 36; http://dx.doi.org/10.1016/j.ceb.2008.03.009; PMID: 18472259
  • Seaman MN. Recycle your receptors with retromer. Trends Cell Biol 2005; 15:68 - 75; http://dx.doi.org/10.1016/j.tcb.2004.12.004; PMID: 15695093
  • Griffin CT, Trejo J, Magnuson T. Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2. Proc Natl Acad Sci U S A 2005; 102:15173 - 7; http://dx.doi.org/10.1073/pnas.0409558102; PMID: 16214895
  • Rojas R, Kametaka S, Haft CR, Bonifacino JS. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 2007; 27:1112 - 24; http://dx.doi.org/10.1128/MCB.00156-06; PMID: 17101778
  • Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2012; 14:29 - 37; http://dx.doi.org/10.1038/ncb2374; PMID: 22193161
  • Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 2007; 120:45 - 54; http://dx.doi.org/10.1242/jcs.03302; PMID: 17148574
  • Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 2000; 11:4105 - 16; PMID: 11102511
  • Carlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol 2004; 14:1791 - 800; http://dx.doi.org/10.1016/j.cub.2004.09.077; PMID: 15498486
  • Cozier GE, Carlton J, McGregor AH, Gleeson PA, Teasdale RD, Mellor H, et al. The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J Biol Chem 2002; 277:48730 - 6; http://dx.doi.org/10.1074/jbc.M206986200; PMID: 12198132
  • Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman EH, et al. Structural basis of membrane invagination by F-BAR domains. Cell 2008; 132:807 - 17; http://dx.doi.org/10.1016/j.cell.2007.12.041; PMID: 18329367
  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 2004; 303:495 - 9; http://dx.doi.org/10.1126/science.1092586; PMID: 14645856
  • Pylypenko O, Lundmark R, Rasmuson E, Carlsson SR, Rak A. The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J 2007; 26:4788 - 800; http://dx.doi.org/10.1038/sj.emboj.7601889; PMID: 17948057
  • Mari M, Bujny MV, Zeuschner D, Geerts WJ, Griffith J, Petersen CM, et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 2008; 9:380 - 93; http://dx.doi.org/10.1111/j.1600-0854.2007.00686.x; PMID: 18088323
  • van Weering JR, Verkade P, Cullen PJ. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 2012; 13:94 - 107; http://dx.doi.org/10.1111/j.1600-0854.2011.01297.x; PMID: 21973056
  • Gomez TS, Billadeau DDA. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 2009; 17:699 - 711; http://dx.doi.org/10.1016/j.devcel.2009.09.009; PMID: 19922874
  • Harbour ME, Breusegem SY, Antrobus R, Freeman C, Reid E, Seaman MN. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci 2010; 123:3703 - 17; http://dx.doi.org/10.1242/jcs.071472; PMID: 20923837
  • Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan NJ, von Zastrow M. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 2011; 13:715 - 21; http://dx.doi.org/10.1038/ncb2252; PMID: 21602791
  • Seaman MN. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 2007; 120:2378 - 89; http://dx.doi.org/10.1242/jcs.009654; PMID: 17606993
  • Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, et al. Functional architecture of the retromer cargo-recognition complex. Nature 2007; 449:1063 - 7; http://dx.doi.org/10.1038/nature06216; PMID: 17891154
  • Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol 2008; 183:513 - 26; http://dx.doi.org/10.1083/jcb.200804048; PMID: 18981234
  • Seaman MN, Harbour ME, Tattersall D, Read E, Bright N. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 2009; 122:2371 - 82; http://dx.doi.org/10.1242/jcs.048686; PMID: 19531583
  • Gokool S, Tattersall D, Seaman MN. EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 2007; 8:1873 - 86; http://dx.doi.org/10.1111/j.1600-0854.2007.00652.x; PMID: 17868075
  • Naslavsky N, Rahajeng J, Sharma M, Jovic M, Caplan S. Interactions between EHD proteins and Rab11-FIP2: a role for EHD3 in early endosomal transport. Mol Biol Cell 2006; 17:163 - 77; http://dx.doi.org/10.1091/mbc.E05-05-0466; PMID: 16251358
  • Henry GD, Corrigan DJ, Dineen JV, Baleja JD. Charge effects in the selection of NPF motifs by the EH domain of EHD1. Biochemistry 2010; 49:3381 - 92; http://dx.doi.org/10.1021/bi100065r; PMID: 20329706
  • Kieken F, Sharma M, Jovic M, Giridharan SS, Naslavsky N, Caplan S, et al. Mechanism for the selective interaction of C-terminal Eps15 homology domain proteins with specific Asn-Pro-Phe-containing partners. J Biol Chem 2010; 285:8687 - 94; http://dx.doi.org/10.1074/jbc.M109.045666; PMID: 20106972
  • Zhang J, Reiling C, Reinecke JB, Prislan I, Marky LA, Sorgen PL, et al. Rabankyrin-5 interacts with EHD1 and Vps26 to regulate endocytic trafficking and retromer function. Traffic 2012; 13:745 - 57; http://dx.doi.org/10.1111/j.1600-0854.2012.01334.x; PMID: 22284051
  • Schnatwinkel C, Christoforidis S, Lindsay MR, Uttenweiler-Joseph S, Wilm M, Parton RG, et al. The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol 2004; 2:E261; http://dx.doi.org/10.1371/journal.pbio.0020261; PMID: 15328530