3,561
Views
154
CrossRef citations to date
0
Altmetric
Review

PAK signaling in cancer

&
Pages 105-116 | Published online: 16 Sep 2012

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646 - 74; http://dx.doi.org/10.1016/j.cell.2011.02.013; PMID: 21376230
  • Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321:1801 - 6; http://dx.doi.org/10.1126/science.1164368; PMID: 18772397
  • Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L, et al. Colorectal cancer: mutations in a signalling pathway. Nature 2005; 436:792; http://dx.doi.org/10.1038/436792a; PMID: 16094359
  • Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR, et al. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 2002; 277:550 - 8; http://dx.doi.org/10.1074/jbc.M105732200; PMID: 11668177
  • Bekri S, Adeálaïde J, Merscher S, Grosgeorge J, Caroli-Bosc F, Perucca-Lostanlen D, et al. Detailed map of a region commonly amplified at 11q13-->q14 in human breast carcinoma. Cytogenet Cell Genet 1997; 79:125 - 31; http://dx.doi.org/10.1159/000134699; PMID: 9533029
  • Brown LA, Kalloger SE, Miller MA, Shih IeM, McKinney SE, Santos JL, et al. Amplification of 11q13 in ovarian carcinoma. Genes Chromosomes Cancer 2008; 47:481 - 9; http://dx.doi.org/10.1002/gcc.20549; PMID: 18314909
  • Bostner J, Ahnström Waltersson M, Fornander T, Skoog L, Nordenskjöld B, Stål O. Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene 2007; 26:6997 - 7005; http://dx.doi.org/10.1038/sj.onc.1210506; PMID: 17486065
  • Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci U S A 2011; 108:7177 - 82; http://dx.doi.org/10.1073/pnas.1103350108; PMID: 21482786
  • Chen S, Auletta T, Dovirak O, Hutter C, Kuntz K, El-ftesi S, et al. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol Ther 2008; 7:1793 - 802; http://dx.doi.org/10.4161/cbt.7.11.6840; PMID: 18836286
  • Reddy SD, Ohshiro K, Rayala SK, Kumar R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 2008; 68:8195 - 200; http://dx.doi.org/10.1158/0008-5472.CAN-08-2103; PMID: 18922890
  • Tuazon PT, Spanos WC, Gump EL, Monnig CA, Traugh JA. Determinants for substrate phosphorylation by p21-activated protein kinase (γ-PAK). Biochemistry 1997; 36:16059 - 64; http://dx.doi.org/10.1021/bi9717845; PMID: 9405039
  • Rennefahrt UEE, Deacon SW, Parker SA, Devarajan K, Beeser A, Chernoff J, et al. Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J Biol Chem 2007; 282:15667 - 78; http://dx.doi.org/10.1074/jbc.M700253200; PMID: 17392278
  • Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J, et al. Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 1997; 17:4454 - 64; PMID: 9234703
  • Qu J, Cammarano MS, Shi Q, Ha KC, de Lanerolle P, Minden A. Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol Cell Biol 2001; 21:3523 - 33; http://dx.doi.org/10.1128/MCB.21.10.3523-3533.2001; PMID: 11313478
  • Tang Y, Yu J, Field J. Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol Cell Biol 1999; 19:1881 - 91; PMID: 10022875
  • Vadlamudi RK, Adam L, Wang R-A, Mandal M, Nguyen D, Sahin A, et al. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 2000; 275:36238 - 44; http://dx.doi.org/10.1074/jbc.M002138200; PMID: 10945974
  • Liu Y, Chen N, Cui X, Zheng X, Deng L, Price S, et al. The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis. Oncogene 2010; 29:5883 - 94; http://dx.doi.org/10.1038/onc.2010.329; PMID: 20697354
  • Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R. PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 2006; 25:2931 - 6; http://dx.doi.org/10.1038/sj.onc.1209309; PMID: 16331248
  • Kiosses WB, Daniels RH, Otey C, Bokoch GM, Schwartz MA. A role for p21-activated kinase in endothelial cell migration. J Cell Biol 1999; 147:831 - 44; http://dx.doi.org/10.1083/jcb.147.4.831; PMID: 10562284
  • Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res 2005; 65:3179 - 84; PMID: 15833848
  • Shalom-Barak T, Knaus UG. A p21-activated kinase-controlled metabolic switch up-regulates phagocyte NADPH oxidase. J Biol Chem 2002; 277:40659 - 65; http://dx.doi.org/10.1074/jbc.M206650200; PMID: 12189148
  • Gururaj A, Barnes CJ, Vadlamudi RK, Kumar R. Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase. Oncogene 2004; 23:8118 - 27; http://dx.doi.org/10.1038/sj.onc.1207969; PMID: 15378030
  • Balasenthil S, Sahin AA, Barnes CJ, Wang RA, Pestell RG, Vadlamudi RK, et al. P21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem 2004; 279:1422 - 8; http://dx.doi.org/10.1074/jbc.M309937200; PMID: 14530270
  • Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J, et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene 2012; 31:3397 - 408; http://dx.doi.org/10.1038/onc.2011.515; PMID: 22105362
  • Rayala SK, Talukder AH, Balasenthil S, Tharakan R, Barnes CJ, Wang RA, et al. P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res 2006; 66:1694 - 701; http://dx.doi.org/10.1158/0008-5472.CAN-05-2922; PMID: 16452229
  • Wang RA, Mazumdar A, Vadlamudi RK, Kumar R. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J 2002; 21:5437 - 47; http://dx.doi.org/10.1093/emboj/cdf543; PMID: 12374744
  • Du J, Sun C, Hu Z, Yang Y, Zhu Y, Zheng D, et al. Lysophosphatidic acid induces MDA-MB-231 breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS One 2010; 5:e15940; http://dx.doi.org/10.1371/journal.pone.0015940; PMID: 21209852
  • Friedland JC, Lakins JN, Kazanietz MG, Chernoff J, Boettiger D, Weaver VM. alpha6beta4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-kappaB-dependent resistance to apoptosis in 3D mammary acini. J Cell Sci 2007; 120:3700 - 12; http://dx.doi.org/10.1242/jcs.03484; PMID: 17911169
  • Aksamitiene E, Achanta S, Kolch W, Kholodenko BN, Hoek JB, Kiyatkin A. Prolactin-stimulated activation of ERK1/2 mitogen-activated protein kinases is controlled by PI3-kinase/Rac/PAK signaling pathway in breast cancer cells. Cell Signal 2011; 23:1794 - 805; http://dx.doi.org/10.1016/j.cellsig.2011.06.014; PMID: 21726627
  • Tao J, Oladimeji P, Rider L, Diakonova M. PAK1-Nck regulates cyclin D1 promoter activity in response to prolactin. Mol Endocrinol 2011; 25:1565 - 78; http://dx.doi.org/10.1210/me.2011-0062; PMID: 21719533
  • Shalaby MR, Shepard HM, Presta L, Rodrigues ML, Beverley PC, Feldmann M, et al. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. J Exp Med 1992; 175:217 - 25; http://dx.doi.org/10.1084/jem.175.1.217; PMID: 1346155
  • Arias-Romero LE, Villamar-Cruz O, Pacheco A, Kosoff R, Huang M, Muthuswamy SK, et al. A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene 2010; 29:5839 - 49; http://dx.doi.org/10.1038/onc.2010.318; PMID: 20711231
  • Pickl M, Ries CH. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 2009; 28:461 - 8; http://dx.doi.org/10.1038/onc.2008.394; PMID: 18978815
  • Li Q, Mullins SR, Sloane BF, Mattingly RR. p21-Activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia 2008; 10:314 - 29; PMID: 18392133
  • Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, et al. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell 2004; 5:575 - 85; http://dx.doi.org/10.1016/j.ccr.2004.05.022; PMID: 15193260
  • Mazumdar A, Kumar R. Estrogen regulation of Pak1 and FKHR pathways in breast cancer cells. FEBS Lett 2003; 535:6 - 10; http://dx.doi.org/10.1016/S0014-5793(02)03846-2; PMID: 12560069
  • Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP, et al. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 2002; 4:681 - 90; http://dx.doi.org/10.1038/ncb838; PMID: 12198493
  • Nola S, Sebbagh M, Marchetto S, Osmani N, Nourry C, Audebert S, et al. Scrib regulates PAK activity during the cell migration process. Hum Mol Genet 2008; 17:3552 - 65; http://dx.doi.org/10.1093/hmg/ddn248; PMID: 18716323
  • Long W, Yi P, Amazit L, LaMarca HL, Ashcroft F, Kumar R, et al. SRC-3-4 mediates the interaction of EGFR with FAK to promote cell migration. Mol Cell 2010; 37:321 - 32; http://dx.doi.org/10.1016/j.molcel.2010.01.004; PMID: 20159552
  • Bostner J, Skoog L, Fornander T, Nordenskjöld B, Stål O. Estrogen receptor-alpha phosphorylation at serine 305, nuclear p21-activated kinase 1 expression, and response to tamoxifen in postmenopausal breast cancer. Clin Cancer Res 2010; 16:1624 - 33; http://dx.doi.org/10.1158/1078-0432.CCR-09-1733; PMID: 20179234
  • Kok M, Zwart W, Holm C, Fles R, Hauptmann M, Van't Veer LJ, et al. PKA-induced phosphorylation of ERα at serine 305 and high PAK1 levels is associated with sensitivity to tamoxifen in ER-positive breast cancer. Breast Cancer Res Treat 2011; 125:1 - 12; http://dx.doi.org/10.1007/s10549-010-0798-y; PMID: 20213082
  • Tang Y, Marwaha S, Rutkowski JL, Tennekoon GI, Phillips PC, Field J. A role for Pak protein kinases in Schwann cell transformation. Proc Natl Acad Sci U S A 1998; 95:5139 - 44; http://dx.doi.org/10.1073/pnas.95.9.5139; PMID: 9560242
  • Surace EI, Haipek CA, Gutmann DH. Effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene 2004; 23:580 - 7; http://dx.doi.org/10.1038/sj.onc.1207142; PMID: 14724586
  • Kissil JL, Johnson KC, Eckman MS, Jacks T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 2002; 277:10394 - 9; http://dx.doi.org/10.1074/jbc.M200083200; PMID: 11782491
  • Xiao G-H, Beeser A, Chernoff J, Testa JR. p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 2002; 277:883 - 6; http://dx.doi.org/10.1074/jbc.C100553200; PMID: 11719502
  • Alfthan K, Heiska L, Grönholm M, Renkema GH, Carpeán O. Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem 2004; 279:18559 - 66; http://dx.doi.org/10.1074/jbc.M313916200; PMID: 14981079
  • Hirokawa Y, Tikoo A, Huynh J, Utermark T, Hanemann CO, Giovannini M, et al. A clue to the therapy of neurofibromatosis type 2: NF2/merlin is a PAK1 inhibitor. Cancer J 2004; 10:20 - 6; http://dx.doi.org/10.1097/00130404-200401000-00006; PMID: 15000491
  • Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell 2003; 12:841 - 9; http://dx.doi.org/10.1016/S1097-2765(03)00382-4; PMID: 14580336
  • Pelton PD, Sherman LS, Rizvi TA, Marchionni MA, Wood P, Friedman RA, et al. Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene 1998; 17:2195 - 209; http://dx.doi.org/10.1038/sj.onc.1202141; PMID: 9811451
  • Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I, et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 2001; 1:63 - 72; http://dx.doi.org/10.1016/S1534-5807(01)00009-0; PMID: 11703924
  • Yi C, Wilker EW, Yaffe MB, Stemmer-Rachamimov A, Kissil JL. Validation of the p21-activated kinases as targets for inhibition in neurofibromatosis type 2. Cancer Res 2008; 68:7932 - 7; http://dx.doi.org/10.1158/0008-5472.CAN-08-0866; PMID: 18829550
  • Chow HY, Stepanova D, Koch J, Chernoff J. p21-Activated kinases are required for transformation in a cell-based model of neurofibromatosis type 2. PLoS One 2010; 5:e13791; http://dx.doi.org/10.1371/journal.pone.0013791; PMID: 21072183
  • Zhou L, Ercolano E, Ammoun S, Schmid MC, Barczyk MA, Hanemann CO. Merlin-deficient human tumors show loss of contact inhibition and activation of Wnt/β-catenin signaling linked to the PDGFR/Src and Rac/PAK pathways. Neoplasia 2011; 13:1101 - 12; PMID: 22247700
  • Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO, et al. Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res 2004; 10:3448 - 56; http://dx.doi.org/10.1158/1078-0432.CCR-03-0210; PMID: 15161701
  • Gong W, An Z, Wang Y, Pan X, Fang W, Jiang B, et al. P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. Int J Cancer 2009; 125:548 - 55; http://dx.doi.org/10.1002/ijc.24428; PMID: 19415746
  • Liu Y, Xiao H, Tian Y, Nekrasova T, Hao X, Lee HJ, et al. The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol Cancer Res 2008; 6:1215 - 24; http://dx.doi.org/10.1158/1541-7786.MCR-08-0087; PMID: 18644984
  • Zhu G, Wang Y, Huang B, Liang J, Ding Y, Xu A, et al. A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene 2012; 31:1001 - 12; http://dx.doi.org/10.1038/onc.2011.294; PMID: 21822311
  • Huynh N, Liu KH, Baldwin GS, He H. P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta 2010; 1803:1106 - 13; http://dx.doi.org/10.1016/j.bbamcr.2010.05.007; PMID: 20595063
  • Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A, et al. Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 2007; 67:8089 - 94; http://dx.doi.org/10.1158/0008-5472.CAN-07-2300; PMID: 17804720
  • Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell 2012; 150:251 - 63; http://dx.doi.org/10.1016/j.cell.2012.06.024; PMID: 22817889
  • Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 2012; 44:1006 - 14; http://dx.doi.org/10.1038/ng.2359; PMID: 22842228
  • Porchia LM, Guerra M, Wang YC, Zhang Y, Espinosa AV, Shinohara M, et al. 2-amino-N-4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl acetamide (OSU-03012), a celecoxib derivative, directly targets p21-activated kinase. Mol Pharmacol 2007; 72:1124 - 31; http://dx.doi.org/10.1124/mol.107.037556; PMID: 17673571
  • Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A 2010; 107:9446 - 51; http://dx.doi.org/10.1073/pnas.0911863107; PMID: 20439741
  • Frost JA, Swantek JL, Stippec S, Yin MJ, Gaynor R, Cobb MH. Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem 2000; 275:19693 - 9; http://dx.doi.org/10.1074/jbc.M909860199; PMID: 10779525
  • Lee SH, Jung YS, Chung JY, Oh AY, Lee SJ, Choi DH, et al. Novel tumor suppressive function of Smad4 in serum starvation-induced cell death through PAK1-PUMA pathway. Cell Death Dis 2011; 2:e235; http://dx.doi.org/10.1038/cddis.2011.116; PMID: 22130069
  • Teng TS, Lin B, Manser E, Ng DCH, Cao X. Stat3 promotes directional cell migration by regulating Rac1 activity via its activator betaPIX. J Cell Sci 2009; 122:4150 - 9; http://dx.doi.org/10.1242/jcs.057109; PMID: 19861492
  • Beeser A, Jaffer ZM, Hofmann C, Chernoff J. Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 2005; 280:36609 - 15; http://dx.doi.org/10.1074/jbc.M502306200; PMID: 16129686
  • Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE, et al. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 1997; 16:6426 - 38; http://dx.doi.org/10.1093/emboj/16.21.6426; PMID: 9351825
  • Tran NH, Frost JA. Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. J Biol Chem 2003; 278:11221 - 6; http://dx.doi.org/10.1074/jbc.M210318200; PMID: 12551923
  • King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 1998; 396:180 - 3; http://dx.doi.org/10.1038/24184; PMID: 9823899
  • Jin S, Zhuo Y, Guo W, Field J. p21-activated Kinase 1 (Pak1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J Biol Chem 2005; 280:24698 - 705; http://dx.doi.org/10.1074/jbc.M413374200; PMID: 15849194
  • Wu X, Carr HS, Dan I, Ruvolo PP, Frost JA. p21 activated kinase 5 activates Raf-1 and targets it to mitochondria. J Cell Biochem 2008; 105:167 - 75; http://dx.doi.org/10.1002/jcb.21809; PMID: 18465753
  • Cotteret S, Jaffer ZM, Beeser A, Chernoff J. p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol 2003; 23:5526 - 39; http://dx.doi.org/10.1128/MCB.23.16.5526-5539.2003; PMID: 12897128
  • Ye DZ, Jin S, Zhuo Y, Field J. p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS One 2011; 6:e27637; http://dx.doi.org/10.1371/journal.pone.0027637; PMID: 22096607
  • Hüser M, Luckett J, Chiloeches A, Mercer K, Iwobi M, Giblett S, et al. MEK kinase activity is not necessary for Raf-1 function. EMBO J 2001; 20:1940 - 51; http://dx.doi.org/10.1093/emboj/20.8.1940; PMID: 11296227
  • Dadke D, Fryer BH, Golemis EA, Field J. Activation of p21-activated kinase 1-nuclear factor kappaB signaling by Kaposi's sarcoma-associated herpes virus G protein-coupled receptor during cellular transformation. Cancer Res 2003; 63:8837 - 47; PMID: 14695200
  • Orr AW, Hahn C, Blackman BR, Schwartz MA. p21-activated kinase signaling regulates oxidant-dependent NF-kappa B activation by flow. Circ Res 2008; 103:671 - 9; http://dx.doi.org/10.1161/CIRCRESAHA.108.182097; PMID: 18669917
  • Foryst-Ludwig A, Naumann M. p21-activated kinase 1 activates the nuclear factor kappa B (NF-kappa B)-inducing kinase-Ikappa B kinases NF-kappa B pathway and proinflammatory cytokines in Helicobacter pylori infection. J Biol Chem 2000; 275:39779 - 85; http://dx.doi.org/10.1074/jbc.M007617200; PMID: 11016939
  • Adams LS, Teegarden D. 1,25-dihydroxycholecalciferol inhibits apoptosis in C3H10T1/2 murine fibroblast cells through activation of nuclear factor kappaB. J Nutr 2004; 134:2948 - 52; PMID: 15514257
  • Fan S, Gao M, Meng Q, Laterra JJ, Symons MH, Coniglio S, et al. Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 2005; 24:1749 - 66; http://dx.doi.org/10.1038/sj.onc.1208327; PMID: 15688034
  • Wu R, Abramson AL, Symons MH, Steinberg BM. Pak1 and Pak2 are activated in recurrent respiratory papillomas, contributing to one pathway of Rac1-mediated COX-2 expression. Int J Cancer 2010; 127:2230 - 7; http://dx.doi.org/10.1002/ijc.25226; PMID: 20131316
  • Neumann M, Foryst-Ludwig A, Klar S, Schweitzer K, Naumann M. The PAK1 autoregulatory domain is required for interaction with NIK in Helicobacter pylori-induced NF-kappaB activation. Biol Chem 2006; 387:79 - 86; http://dx.doi.org/10.1515/BC.2006.011; PMID: 16497167
  • Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1999; 1:253 - 9; http://dx.doi.org/10.1038/12963; PMID: 10559936
  • Roger L, Gadea G, Roux P. Control of cell migration: a tumour suppressor function for p53?. Biol Cell 2006; 98:141 - 52; http://dx.doi.org/10.1042/BC20050058; PMID: 16480340
  • Cammarano MS, Nekrasova T, Noel B, Minden A. Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol Cell Biol 2005; 25:9532 - 42; http://dx.doi.org/10.1128/MCB.25.21.9532-9542.2005; PMID: 16227603
  • Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 2009; 16:23 - 9; http://dx.doi.org/10.1038/nsmb.1533; PMID: 19079265
  • Swami S, Raghavachari N, Muller UR, Bao YP, Feldman D. Vitamin D growth inhibition of breast cancer cells: gene expression patterns assessed by cDNA microarray. Breast Cancer Res Treat 2003; 80:49 - 62; http://dx.doi.org/10.1023/A:1024487118457; PMID: 12889598
  • Baldwin A, Grueneberg DA, Hellner K, Sawyer J, Grace M, Li W, et al. Kinase requirements in human cells: V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proc Natl Acad Sci U S A 2010; 107:12463 - 8; http://dx.doi.org/10.1073/pnas.1007462107; PMID: 20616055
  • Aoki H, Yokoyama T, Fujiwara K, Tari AM, Sawaya R, Suki D, et al. Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clin Cancer Res 2007; 13:6603 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-07-0145; PMID: 18006760
  • Holm C, Rayala S, Jirström K, Stål O, Kumar R, Landberg G. Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst 2006; 98:671 - 80; http://dx.doi.org/10.1093/jnci/djj185; PMID: 16705121
  • Ching YP, Leong VY, Lee MF, Xu HT, Jin DY, Ng IO. P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 2007; 67:3601 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-06-3994; PMID: 17440071
  • O'Sullivan GC, Tangney M, Casey G, Ambrose M, Houston A, Barry OP. Modulation of p21-activated kinase 1 alters the behavior of renal cell carcinoma. Int J Cancer 2007; 121:1930 - 40; http://dx.doi.org/10.1002/ijc.22893; PMID: 17621631
  • Mahlamäki EH, Kauraniemi P, Monni O, Wolf M, Hautaniemi S, Kallioniemi A. High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia 2004; 6:432 - 9; http://dx.doi.org/10.1593/neo.04130; PMID: 15548351
  • Ito M, Nishiyama H, Kawanishi H, Matsui S, Guilford P, Reeve A, et al. P21-activated kinase 1: a new molecular marker for intravesical recurrence after transurethral resection of bladder cancer. J Urol 2007; 178:1073 - 9; http://dx.doi.org/10.1016/j.juro.2007.05.012; PMID: 17644138
  • Schraml P, Schwerdtfeger G, Burkhalter F, Raggi A, Schmidt D, Ruffalo T, et al. Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. Am J Pathol 2003; 163:985 - 92; http://dx.doi.org/10.1016/S0002-9440(10)63458-X; PMID: 12937139
  • Davidson B, Shih IeM, Wang TL. Different clinical roles for p21-activated kinase-1 in primary and recurrent ovarian carcinoma. Hum Pathol 2008; 39:1630 - 6; http://dx.doi.org/10.1016/j.humpath.2008.03.009; PMID: 18656238
  • Kaur R, Yuan X, Lu ML, Balk SP. Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate 2008; 68:1510 - 6; http://dx.doi.org/10.1002/pros.20787; PMID: 18642328
  • Mao X, Onadim Z, Price EA, Child F, Lillington DM, Russell-Jones R, et al. Genomic alterations in blastic natural killer/extranodal natural killer-like T cell lymphoma with cutaneous involvement. J Invest Dermatol 2003; 121:618 - 27; http://dx.doi.org/10.1046/j.1523-1747.2003.12406.x; PMID: 12925224
  • Liu RX, Wang WQ, Ye L, Bi YF, Fang H, Cui B, et al. p21-activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocrine 2010; 38:38 - 47; http://dx.doi.org/10.1007/s12020-010-9324-6; PMID: 20960100
  • Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev 2009; 28:51 - 63; http://dx.doi.org/10.1007/s10555-008-9168-1; PMID: 19165420
  • Kumar R, Gururaj AE, Barnes CJ. p21-activated kinases in cancer. Nat Rev Cancer 2006; 6:459 - 71; http://dx.doi.org/10.1038/nrc1892; PMID: 16723992
  • Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, et al. Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem 2002; 277:44417 - 30; http://dx.doi.org/10.1074/jbc.M203754200; PMID: 12226077
  • Foster DB, Shen LH, Kelly J, Thibault P, Van Eyk JE, Mak AS. Phosphorylation of caldesmon by p21-activated kinase. Implications for the Ca(2+) sensitivity of smooth muscle contraction. J Biol Chem 2000; 275:1959 - 65; http://dx.doi.org/10.1074/jbc.275.3.1959; PMID: 10636898
  • McFawn PK, Shen L, Vincent SG, Mak A, Van Eyk JE, Fisher JT. Calcium-independent contraction and sensitization of airway smooth muscle by p21-activated protein kinase. Am J Physiol Lung Cell Mol Physiol 2003; 284:L863 - 70; PMID: 12513968
  • Van Eyk JE, Arrell DK, Foster DB, Strauss JD, Heinonen TY, Furmaniak-Kazmierczak E, et al. Different molecular mechanisms for Rho family GTPase-dependent, Ca2+-independent contraction of smooth muscle. J Biol Chem 1998; 273:23433 - 9; http://dx.doi.org/10.1074/jbc.273.36.23433; PMID: 9722579
  • Takizawa N, Koga Y, Ikebe M. Phosphorylation of CPI17 and myosin binding subunit of type 1 protein phosphatase by p21-activated kinase. Biochem Biophys Res Commun 2002; 297:773 - 8; http://dx.doi.org/10.1016/S0006-291X(02)02302-1; PMID: 12359219
  • Ohtakara K, Inada H, Goto H, Taki W, Manser E, Lim L, et al. p21-activated kinase PAK phosphorylates desmin at sites different from those for Rho-associated kinase. Biochem Biophys Res Commun 2000; 272:712 - 6; http://dx.doi.org/10.1006/bbrc.2000.2854; PMID: 10860820
  • Zenke FT, Krendel M, DerMardirossian C, King CC, Bohl BP, Bokoch GM. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J Biol Chem 2004; 279:18392 - 400; http://dx.doi.org/10.1074/jbc.M400084200; PMID: 14970201
  • Zhao ZS, Lim JP, Ng YW, Lim L, Manser E. The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 2005; 20:237 - 49; http://dx.doi.org/10.1016/j.molcel.2005.08.035; PMID: 16246726
  • Dan C, Kelly A, Bernard O, Minden A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 2001; 276:32115 - 21; http://dx.doi.org/10.1074/jbc.M100871200; PMID: 11413130
  • Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 1999; 283:2083 - 5; http://dx.doi.org/10.1126/science.283.5410.2083; PMID: 10092231
  • Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB. Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 2000; 275:18366 - 74; http://dx.doi.org/10.1074/jbc.M001339200; PMID: 10748018
  • Alberts AS, Qin H, Carr HS, Frost JA. PAK1 negatively regulates the activity of the Rho exchange factor NET1. J Biol Chem 2005; 280:12152 - 61; http://dx.doi.org/10.1074/jbc.M405073200; PMID: 15684429
  • Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 2001; 276:1677 - 80; http://dx.doi.org/10.1074/jbc.C000635200; PMID: 11058583
  • Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R. p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep 2004; 5:154 - 60; http://dx.doi.org/10.1038/sj.embor.7400079; PMID: 14749719
  • DerMardirossian C, Schnelzer A, Bokoch GM. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 2004; 15:117 - 27; http://dx.doi.org/10.1016/j.molcel.2004.05.019; PMID: 15225553
  • Chew TL, Masaracchia RA, Goeckeler ZM, Wysolmerski RB. Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil 1998; 19:839 - 54; http://dx.doi.org/10.1023/A:1005417926585; PMID: 10047984
  • Ramos E, Wysolmerski RB, Masaracchia RA. Myosin phosphorylation by human cdc42-dependent S6/H4 kinase/gammaPAK from placenta and lymphoid cells. Recept Signal Transduct 1997; 7:99 - 110; PMID: 9392438
  • Vadlamudi RK, Barnes CJ, Rayala S, Li F, Balasenthil S, Marcus S, et al. p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol Cell Biol 2005; 25:3726 - 36; http://dx.doi.org/10.1128/MCB.25.9.3726-3736.2005; PMID: 15831477
  • Goto H, Tanabe K, Manser E, Lim L, Yasui Y, Inagaki M. Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes Cells 2002; 7:91 - 7; http://dx.doi.org/10.1046/j.1356-9597.2001.00504.x; PMID: 11895474
  • Li QF, Spinelli AM, Wang R, Anfinogenova Y, Singer HA, Tang DD. Critical role of vimentin phosphorylation at Ser-56 by p21-activated kinase in vimentin cytoskeleton signaling. J Biol Chem 2006; 281:34716 - 24; http://dx.doi.org/10.1074/jbc.M607715200; PMID: 16990256
  • Tang DD, Bai Y, Gunst SJ. Silencing of p21-activated kinase attenuates vimentin phosphorylation on Ser-56 and reorientation of the vimentin network during stimulation of smooth muscle cells by 5-hydroxytryptamine. Biochem J 2005; 388:773 - 83; http://dx.doi.org/10.1042/BJ20050065; PMID: 15766329
  • Wang R, Li QF, Anfinogenova Y, Tang DD. Dissociation of Crk-associated substrate from the vimentin network is regulated by p21-activated kinase on ACh activation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2007; 292:L240 - 8; http://dx.doi.org/10.1152/ajplung.00199.2006; PMID: 16997882
  • Chan W, Kozma R, Yasui Y, Inagaki M, Leung T, Manser E, et al. Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. Eur J Cell Biol 2002; 81:692 - 701; http://dx.doi.org/10.1078/0171-9335-00281; PMID: 12553669
  • Jung JH, Pendergast AM, Zipfel PA, Traugh JA. Phosphorylation of c-Abl by protein kinase Pak2 regulates differential binding of ABI2 and CRK. Biochemistry 2008; 47:1094 - 104; http://dx.doi.org/10.1021/bi701533j; PMID: 18161990
  • Roig J, Tuazon PT, Zipfel PA, Pendergast AM, Traugh JA. Functional interaction between c-Abl and the p21-activated protein kinase γ-PAK. Proc Natl Acad Sci U S A 2000; 97:14346 - 51; http://dx.doi.org/10.1073/pnas.97.26.14346; PMID: 11121037
  • Tran NH, Wu X, Frost JA. B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. J Biol Chem 2005; 280:16244 - 53; http://dx.doi.org/10.1074/jbc.M501185200; PMID: 15710605
  • Huang Z, Traugh JA, Bishop JM. Negative control of the Myc protein by the stress-responsive kinase Pak2. Mol Cell Biol 2004; 24:1582 - 94; http://dx.doi.org/10.1128/MCB.24.4.1582-1594.2004; PMID: 14749374
  • Edin ML, Juliano RL. Raf-1 serine 338 phosphorylation plays a key role in adhesion-dependent activation of extracellular signal-regulated kinase by epidermal growth factor. Mol Cell Biol 2005; 25:4466 - 75; http://dx.doi.org/10.1128/MCB.25.11.4466-4475.2005; PMID: 15899852
  • Chaudhary A, King WG, Mattaliano MD, Frost JA, Diaz B, Morrison DK, et al. Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr Biol 2000; 10:551 - 4; http://dx.doi.org/10.1016/S0960-9822(00)00475-9; PMID: 10801448
  • Zang M, Hayne C, Luo Z. Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. J Biol Chem 2002; 277:4395 - 405; http://dx.doi.org/10.1074/jbc.M110000200; PMID: 11733498
  • De la Mota-Peynado A, Chernoff J, Beeser A. Identification of the atypical MAPK Erk3 as a novel substrate for p21-activated kinase (Pak) activity. J Biol Chem 2011; 286:13603 - 11; http://dx.doi.org/10.1074/jbc.M110.181743; PMID: 21317288
  • Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, et al. p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 2002; 3:767 - 73; http://dx.doi.org/10.1093/embo-reports/kvf157; PMID: 12151336
  • Frost JA, Xu S, Hutchison MR, Marcus S, Cobb MH. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol Cell Biol 1996; 16:3707 - 13; PMID: 8668187
  • Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB, et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol 2003; 162:281 - 91; http://dx.doi.org/10.1083/jcb.200212141; PMID: 12876277
  • Eblen ST, Slack-Davis JK, Tarcsafalvi A, Parsons JT, Weber MJ, Catling AD. Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol 2004; 24:2308 - 17; http://dx.doi.org/10.1128/MCB.24.6.2308-2317.2004; PMID: 14993270
  • Coles LC, Shaw PE. PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene 2002; 21:2236 - 44; http://dx.doi.org/10.1038/sj.onc.1205302; PMID: 11948406
  • Gallagher ED, Xu S, Moomaw C, Slaughter CA, Cobb MH. Binding of JNK/SAPK to MEKK1 is regulated by phosphorylation. J Biol Chem 2002; 277:45785 - 92; http://dx.doi.org/10.1074/jbc.M207702200; PMID: 12228228
  • Orton KC, Ling J, Waskiewicz AJ, Cooper JA, Merrick WC, Korneeva NL, et al. Phosphorylation of Mnk1 by caspase-activated Pak2/gamma-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. J Biol Chem 2004; 279:38649 - 57; http://dx.doi.org/10.1074/jbc.M407337200; PMID: 15234964
  • Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG. P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 2008; 27:4900 - 8; http://dx.doi.org/10.1038/onc.2008.131; PMID: 18427546
  • Tuazon PT, Lorenson MY, Walker AM, Traugh JA. p21-activated protein kinase gamma-PAK in pituitary secretory granules phosphorylates prolactin. FEBS Lett 2002; 515:84 - 8; http://dx.doi.org/10.1016/S0014-5793(02)02444-4; PMID: 11943200
  • Jakobi R, Moertl E, Koeppel MA. p21-activated protein kinase γ-PAK suppresses programmed cell death of BALB3T3 fibroblasts. J Biol Chem 2001; 276:16624 - 34; http://dx.doi.org/10.1074/jbc.M007753200; PMID: 11278362
  • Tang Y, Zhou H, Chen A, Pittman RN, Field J. The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem 2000; 275:9106 - 9; http://dx.doi.org/10.1074/jbc.275.13.9106; PMID: 10734042
  • Schürmann A, Mooney AF, Sanders LC, Sells MA, Wang H-G, Reed J-C, et al. p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 2000; 20:453 - 61; http://dx.doi.org/10.1128/MCB.20.2.453-461.2000; PMID: 10611223
  • Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, et al. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J 2008; 27:970 - 81; http://dx.doi.org/10.1038/emboj.2008.59; PMID: 18354494
  • Manavathi B, Rayala SK, Kumar R. Phosphorylation-dependent regulation of stability and transforming potential of ETS transcriptional factor ESE-1 by p21-activated kinase 1. J Biol Chem 2007; 282:19820 - 30; http://dx.doi.org/10.1074/jbc.M702309200; PMID: 17491012
  • Wang J, Frost JA, Cobb MH, Ross EM. Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. J Biol Chem 1999; 274:31641 - 7; http://dx.doi.org/10.1074/jbc.274.44.31641; PMID: 10531372
  • Knaus UG, Morris S, Dong HJ, Chernoff J, Bokoch GM. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors. Science 1995; 269:221 - 3; http://dx.doi.org/10.1126/science.7618083; PMID: 7618083
  • Martyn KD, Kim MJ, Quinn MT, Dinauer MC, Knaus UG. p21-activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils. Blood 2005; 106:3962 - 9; http://dx.doi.org/10.1182/blood-2005-03-0859; PMID: 16099876
  • Ahmed S, Prigmore E, Govind S, Veryard C, Kozma R, Wientjes FB, et al. Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox). J Biol Chem 1998; 273:15693 - 701; http://dx.doi.org/10.1074/jbc.273.25.15693; PMID: 9624165
  • Vadlamudi RK, Manavathi B, Singh RR, Nguyen D, Li F, Kumar R. An essential role of Pak1 phosphorylation of SHARP in Notch signaling. Oncogene 2005; 24:4591 - 6; http://dx.doi.org/10.1038/sj.onc.1208672; PMID: 15824732
  • Wang RA, Vadlamudi RK, Bagheri-Yarmand R, Beuvink I, Hynes NE, Kumar R. Essential functions of p21-activated kinase 1 in morphogenesis and differentiation of mammary glands. J Cell Biol 2003; 161:583 - 92; http://dx.doi.org/10.1083/jcb.200212066; PMID: 12732616
  • Miah SM, Sada K, Tuazon PT, Ling J, Maeno K, Kyo S, et al. Activation of Syk protein tyrosine kinase in response to osmotic stress requires interaction with p21-activated protein kinase Pak2/gamma-PAK. Mol Cell Biol 2004; 24:71 - 83; http://dx.doi.org/10.1128/MCB.24.1.71-83.2004; PMID: 14673144
  • Sakurada K, Kato H, Nagumo H, Hiraoka H, Furuya K, Ikuhara T, et al. Synapsin I is phosphorylated at Ser603 by p21-activated kinases (PAKs) in vitro and in PC12 cells stimulated with bradykinin. J Biol Chem 2002; 277:45473 - 9; http://dx.doi.org/10.1074/jbc.M206673200; PMID: 12237306
  • Buscemi N, Foster DB, Neverova I, Van Eyk JE. p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I. Circ Res 2002; 91:509 - 16; http://dx.doi.org/10.1161/01.RES.0000035246.27856.53; PMID: 12242269
  • Chong C, Tan L, Lim L, Manser E. The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem 2001; 276:17347 - 53; http://dx.doi.org/10.1074/jbc.M009316200; PMID: 11278486
  • Gatti A, Huang Z, Tuazon PT, Traugh JA. Multisite autophosphorylation of p21-activated protein kinase γ-PAK as a function of activation. J Biol Chem 1999; 274:8022 - 8; http://dx.doi.org/10.1074/jbc.274.12.8022; PMID: 10075701