4,550
Views
53
CrossRef citations to date
0
Altmetric
Review

Isotretinoin and FoxO1

A scientific hypothesis

Pages 141-165 | Published online: 01 Jul 2011

References

  • Peck GL, Olsen TG, Yoder FM, Strauss JS, Downing DT, Pandya M, et al. Prolonged remissions of cystic acne with 13-cis-retinoic acid. N Engl J Med 1979; 300:329 - 333
  • Ganceviciene R, Zouboulis CC. Isotretinoin: state of the art treatment for acne vulgaris. Expert Rev Dermatol 2007; 2:693 - 701
  • Layton A. The use of isotretinoin in acne. Dermatoendocrinol 2009; 1:162 - 169
  • David M, Hodak E, Lowe NJ. Adverse effects of retinoids. Med Toxicol Adverse Drug Exp 1988; 3:273 - 288
  • Tsukada M, Schröder M, Roos TC, Chandraratna RA, Reichert U, Merk HF, et al. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoid acid receptors. J Invest Dermatol 2000; 115:321 - 327
  • Sitzmann JH, Bauer FW, Cunliffe WJ, Holland DB, Lemotte PK. In situ hybridization analysis of CRABP II expression in sebaceous follicles from 13-cis retinoic acid-treated acne patients. Br J Dermatol 1995; 133:241 - 248
  • Zouboulis CC. Isotretinoin revisited: Pluripotent effects on human sebaceous gland cells. J Invest Dermatol 2006; 126:2154 - 2156
  • Gudas LJ, Wagner JA. Retinoids regulate stem cell differentiation. J Cell Physiol 2010; 226:322 - 330
  • Kim MJ, Ahn K, Park SH, Kang HJ, Jang BG, Oh SJ, et al. SIRT1 regulates tyrosine hydroxylase expression and differentiation of neuroblastoma cells via FOXO3a. FEBS Lett 2009; 583:1183 - 1188
  • Sakoe Y, Sakoe K, Kirito K, Ozawa K, Komatsu N. FOXO3A as a key molecule for all-trans retinoic acid-induced granulocytic differentiation and apoptosis in acute promyelocytic leukemia. Blood 2010; 115:3787 - 3795
  • Essaghir A, Dif N, Marbehant CY, Coffer PJ, Demoulin JB. The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem 2009; 284:10334 - 10342
  • Chen W, Obermayer-Pietsch B, Hong JB, Melnik B, Yamasaki O, Dessinioti C, et al. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol 2011; 25:637 - 646
  • Melnik BC. FoxO1—the key for the pathogenesis and therapy of acne?. J Dtsch Dermatol Ges 2010; 8:105 - 114
  • Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci 2007; 120:2479 - 2487
  • Van der Heide LP, Hoekman MF, Smid MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380:297 - 309
  • Peng SL. Forkhead transcription factors in chronic inflammation. Int J Biochem Cell Biol 2009; 42:482 - 485
  • Ouyang W, Beckett O, Flavell RA, Li Mo. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 2009; 30:358 - 371
  • van der Vos KE, Coffer PJ. The extending network of FOXO transcriptional genes. Antioxid Redox Signal 2011; 14:579 - 592
  • Cheng Z, White MF. Targeting forkhead boxO1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal 2011; 14:649 - 661
  • Melnik B. Milk consumption: aggravating factor of acne and promoter of chronic diseases of western societies. J Dtsch Dermatol Ges 2009; 7:364 - 370
  • Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol 2009; 18:833 - 841
  • Smith R, Mann N, Braue A, Mäkeläinen H, Varigos GA. The effect of a high protein, low glycemic load diet versus a conventional, high glycemic load diet on biochemical parameters associated with acne vulgaris: a randomized, investigator-masked, controlled trial. J Am Acad Dermatol 2007; 57:247 - 256
  • Smith R, Mann N, Mäkeläinen H, Roper J, Braue A, Varigos G. A pilot study to determine the short-term effects of a low glycemic load diet on hormonal markers of acne: a nonrandomized, parallel, controlled feeding trial. Mol Nutr Food Res 2008; 52:718 - 726
  • Choudhry R, Hodgins MB, Van der Kwast TH, Brinkmann AO, Boersma WJ. Localization of androgen receptors in human skin by immunohistochemistry: implications for the hormonal regulation of hair growth, sebaceous glands and sweat glands. J Endocrinol 1992; 133:467 - 475
  • Pelletier G, Ren L. Localization of sex steroid receptors in human skin. Histol Histopathol 2004; 19:629 - 636
  • Rosignoli C, Nicolas JC, Jomard A, Michel S. Involvement of the SREBP pathway in the mode of action of androgens in sebaceous glands in vivo. Exp Dermatol 2003; 12:480 - 489
  • Imperato-McGinley J, Gautier T, Cai LQ, Yee B, Epstein J, Pochi P. The androgen control of sebum production. Studies of subjects with dihydrotestosterone deficiency and complete androgen insensitivity. J Clin Endocrinol Metab 1993; 76:524 - 528
  • Schmidt JB, Spona J, Huber J. Androgen receptor in hisutism and acne. Gynecol Obest Invest 1986; 22:206 - 211
  • Li J, Al-Azzawi F. Mechanism of androgen receptor action. Maturitas 2009; 63:142 - 148
  • He B, Minges JT, Lee LW, Wilson EM. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J Biol Chem 2002; 277:10226 - 10235
  • Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007; 28:778 - 808
  • Ma Q, Fu W, Li P, Nicosia SV, Jenster G, Zhang X, et al. FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment. Mol Endocrinol 2009; 23:213 - 225
  • Yanase T, Fan WQ. Modification of androgen receptor function by IGF-1 signaling: implications in the mechanism of refractory prostate carcinoma. Vit Horm 2009; 80:649 - 666
  • Fan W, Yanase T, Morinaga H, Okabe T, Nomura M, Daitoku H, et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J Biol Chem 2007; 282:7329 - 7338
  • Nantermet P, Xu J, Yu Y, Hodor P, Holder D, Adamski S, et al. Identification of genetic pathways activated by the androgen receptor during the induction of proliferation in the ventral prostate gland. J Biol Chem 2004; 279:1310 - 1322
  • Karadag AS, Ertugrul DT, Tutal E, Akin KO. Short-term isotretinoin treatment decreases insulin-like growth factor-1 and insulin-like growth factor binding protein-3 levels: does isotretinoin affect growth hormone physiology?. Br J Dermatol 2010; 162:798 - 802
  • Boudou P, Soliman H, Chivot M, Villette JM, Vexiau P, Belanger A, et al. Effect of oral isotretinoin treatment on skin androgen receptor levels in male acneic patients. J Clin Endocinol Metab 1995; 80:1158 - 1161
  • Horton R, Pasupuletti V, Antonipillai I. Androgen induction of 5α-reductase may be mediated via insulin-like growth factor-I. Endocrinology 1993; 133:447 - 451
  • Boudou P, Chivot M, Vexiau P, Soliman H, Villette JM, Julien R, et al. Evidence for decreased androgen 5α-reduction in skin and liver of men with severe acne after 13-cis retinoic acid treatment. J Clin Endocr Metab 1994; 78:1064 - 1069
  • Hembree JR, Harmon CS, Nevins TD, Eckert RL. Regulation of human dermal papilla cell production of insulin-like growth factor binding protein-3 by retinoic acid, glucocorticoids and insulin-like growth factor-1. J Cell Physiol 1996; 167:556 - 561
  • Collier CN, Harper JC, Cafardi JA, Cantrell WC, Wang W, Foster KW, et al. The prevalence of acne in adults 20 years and older. J Am Acad Dermatol 2008; 58:56 - 59
  • Dréno B. Recent data on epidemiology of acne. Ann Dermatol Venereol 2010; 137:49 - 51
  • Walton S, Wyatt EH, Cunliffe WJ. Genetic control of sebum excretion and acne—a twin study. Br J Dermatol 1988; 118:393 - 396
  • Stewart ME, Grahek MO, Cambier LS, Wertz PW, Downing DT. Dilutional effect of increased sebaceous gland activity on the proportion of linoleic acid in sebaceous wax esters and in epidermal acylceramides. J Invest Dermatol 1986; 87:733 - 736
  • Bataille V, Snieder H, MacGregor AJ, Sasieni P, Spector TD. The influence of genetics and environmental factors in the pathogenesis of acne: A twin study of acne in women. J Invest Dermatol 2002; 119:1317 - 1322
  • Ballanger F, Baudry P, N'Guyen JM, Khammari A, Dréno B, et al. Heredity: A prognostic factor for acne. Dermatology 2006; 212:145 - 149
  • Sawaya ME, Shalita AR. Androgen receptor polymorphisms (CAG repeat lengths) in androgenetic alopecia, hirsutism and acne. J Cutan Med Surg 1998; 3:9 - 15
  • Pang Y, He CD, Liu Y, Wang KB, Xiao T, Wang YK. Combination of short CAG and GGN repeats in the androgen receptor gene is associated with acne risk in North East China. JEADV 2008; 22:1445 - 1451
  • Yang Z, Cheng B, Tang W, Tang W, Dong Y, Xiao C. Relationship between the CAG repeat polymorphism in the androgen receptor gene and acne in the Han ethnic group. Dermatology 2009; 218:302 - 306
  • Pinsky L, Beitel LK, Trifiro MA. Scriver CR, Beaudet AL, Sly WS, et al. Spinobulbar muscular atrophy. The Metabolic & Molecular Bases of Inherited Disease 2001; 3:New York McGraw-Hill 4147 - 4157 Eights, Ed.
  • Landthaler M, Kummermehr J, Wagner A, Plewig G. Inhibitory effects of 13-cis-retinoic acid on human sebaceous glands. Arch Dermatol Res 1980; 269:297 - 309
  • Orfanos CE, Zouboulis CC, Almond Roesler B, Geilen CC. Current use and future potential role of retinoids in dermatology. Drugs 1997; 53:358 - 388
  • Melnik B, Kinner T, Plewig G. Influence of oral isotretinoin treatment on the composition of comedonal lipids. Implications for comedogenesis in acne vulgaris. Arch Dermatol Res 1988; 280:97 - 102
  • Zouboulis CC, Krieter A, Gollnick H, Orfanos CE. Progressive differentiation of human sebocytes in vitro is characterized by increased cell size and altered antigenic expression and is regulated by culture duration and retinoids. Exp Dermatol 1994; 3:151 - 160
  • Zouboulis CC, Korge B, Akamatsu H, Xia L, Schiller S, Gollnick H, et al. Effects of 13-cis-retinoic acid, all-trans-retinoic acid and acitretin on the proliferation, lipid synthesis and keratin expression of cultured human sebocytes in vitro. J Invest Dermatol 1991; 96:792 - 797
  • Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM. Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol 2009; 1:177 - 187
  • Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM. Isotretinoin temporally regulates distinct sets of genes in patient skin. J Invest Dermatol 2009; 129:1038 - 1042
  • Nakae J, Oki M, Cao Y. The FoxO transcription factors and metabolic regulation. FEBS Lett 2008; 582:54 - 67
  • Akamatsu H, Zouboulis CC, Orfanos CE. Control of human sebocyte proliferation in vitro by testosterone and 5-alpha-dihydrotestosterone is dependent on the localization of the sebaceous glands. J Invest Dermatol 1992; 99:509 - 511
  • Chen W, Yang CC, Sheu HM, Seltmann H, Zouboulis CC. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol 2003; 121:441 - 447
  • Makrantonaki E, Zouboulis CC. Testosterone metabolism to 5α-dihydrotestosterone and synthesis of sebaceous lipids is regulated by the peroxisome proliferator-activated receptor ligand linoleic acid in human sebocytes. Br J Dermatol 2007; 156:428 - 432
  • Zhang Q, Seltmann H, Zouboulis CC, Konger RL. Involvement of PPARgamma in oxidative stress-mediated prostaglandin E(2) production in SZ95 human sebaceous gland cells. J Invest Dermatol 2006; 126:42 - 48
  • Trivedi NR, Cong Z, Nelson AM, Albert AJ, Rosamilia LL, Sivarajah S, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol 2006; 126:2002 - 2009
  • Armoni M, Harel C, Karni S, Chen H, Bar-Yoseph F, Ver MR, et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem 2006; 281:19881 - 19891
  • Dowell P, Otto TC, Adi S, lane MD. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 2003; 278:45485 - 45491
  • Fan WQ, Imamura T, Sonoda N, Sears DD, Patsouris D, Kim JJ, et al. FOXO1 transrepresses peroxisome proliferator-activated receptor γ transactivation, coordinating an insulin-induced feed-forward response in adipocytes. J Biol Chem 2009; 284:12188 - 12197
  • Vora S, Ovhal A, Jerajani H, Nair N, Chakrabortty A. Correlation of facial sebum to serum insulin-like growth factor-1 in patients with acne. Br J Dermatol 2008; 159:990 - 991
  • Hong I, Lee MH, Na TY, Zouboulis CC, Lee MO. LXRalpha enhances lipid synthesis in SZ95 sebocytes. J Invest Dermatol 2008; 128:1266 - 1272
  • Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, et al. Role of LXRs in control of lipogenesis. Genes Dev 2000; 14:2831 - 2838
  • Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, et al. Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 2004; 24:3430 - 3444
  • Harrison WJ, Bull JJ, Seltmann H, Zouboulis CC, Philpott MP. Expression of lipogenic factors galectin-12, resistin, SREBP-1 and SCD in human sebaceous glands and cultured sebocytes. J Invest Dermatol 2007; 127:1309 - 1317
  • Smith TM, Gilliland K, Clawson GA, Thiboutot D. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinosit-ide-3-kinase/Akt pathway. J Invest Dermatol 2008; 128:1286 - 1293
  • Kamei Y, Miura S, Suganami T, Akaike F, Kanai S, Sugita S, et al. Regulation of SREBP1c gene expression in skeletal muscle: role of retinoid X receptor/liver X receptor and forkhead-O1 transcription factor. Endocrinology 2008; 149:2293 - 2305
  • Zouboulis CC, Orfanos CE. Millikan LE. Retinoids. Drug Therapy in Dermatology 2000; New York/Basel Marcel Dekker 171 - 233
  • Kim MJ, Ciletti N, Michel S, Reichert U, Rosenfield RL. The role of specific retinoid receptors in sebocyte growth and differentiation in culture. J Invest Dermatol 2000; 114:349 - 353
  • Nelson AM, Gilliland KL, Cong Z, Thiboutot DM. 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol 2006; 126:2178 - 2189
  • Zouboulis CC, Seltmann H, Neitzel H, Orfanos CE. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol 1999; 113:1011 - 1020
  • Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM. Early gene changes induced by isotretinoin in the skin provide clues to its mechanism of action. Dermatoendocrinol 2009; 1:100 - 101
  • Grana X, Garriga J, Mayol X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 1998; 17:3365 - 3383
  • Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ, et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol 2002; 22:2025 - 2203
  • Sitzmann JH, Bauer FW, Cunliffe WJ, Holland DB, Lemotte P. In situ hybridization analysis of CRABP II expression in sebaceous follicles from 13-cis retinoic acid-treated acne patients. Br J Dermatol 1995; 133:241 - 248
  • Noy N. Between death and survival: retinoic acid in regulation of apoptosis. Ann Rev Nutr 2010; 30:201 - 217
  • Battle TE, Roberson MS, Zhang T, Varvayanis S, Yen A. Retinoic acid-induced blr1 expression requires RARalpha RXR and MAPK activation and uses ERK2 but not JNK/SAPK to accelerate cell differentiation. Eur J Cell Biol 2001; 80:59 - 67
  • Wróbel A, Seltmann H, Fimmel S, Müller-Decker K, Tsukada M, Bogdanoff B, et al. Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol 2003; 120:175 - 181
  • Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot M. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J Clin Invest 2008; 118:1468 - 1478
  • Liu B, Lee HY, Weinzimer SA, Powelli DR, Clifford JL, Kurie JM, et al. Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-α regulate transcriptional signaling and apoptosis. J Biol Chem 2000; 275:33607 - 33613
  • Lee KW, Cohen P. Nuclear effects: unexpected intracellular actions of insulin-like growth factor binding protein-3. J Endocrinol 2002; 175:33 - 40
  • Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, Carrera1 P, et al. FOXO-dependent regulation of innate immune homeostasis. Nature 2010; 463:369 - 373
  • Edmondson SR, Thumiger SP, Kaur P, Loh B, Koelmeyer R, Li A, et al. Insulin-like growth factor binding protein-3 (IGFBP-3) localizes to and modulates proliferative epidermal keratinocytes in vivo. Br J Dermatol 2005; 152:225 - 230
  • Plewig G, Fulton JE, Kligman AM. Cellular dynamics of comedo formation in acne vulgaris. Arch Dermatol Forsch 1971; 242:12 - 29
  • Ikezoe T, Tanosaki S, Krug U, Liu B, Cohen P, Taguchi H, et al. Insulin-like growth factor binding protein-3 antagonizes the effects of retinoids in myeloid leukemia cells. Blood 2004; 104:237 - 242
  • Oh Y, Gucev Z, Ng L, Müller HL, Rosenfeld RG. Antiproliferative actions of insulin-like growth factor binding protein (IGFBP)-3 in human breast cancer cells. Prog Growth Factor Res 1995; 6:503 - 512
  • Niemann C. Differentiation of the sebaceous gland. Dermatoendocrinol 2009; 1:64 - 67
  • Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol 2001; 11:558 - 568
  • Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. Deregulated expression of c-myc depletes epidermal stem cells. Nat Genet 2001; 28:165 - 168
  • Braun KM, Niemann C, Jensen UB, Sundberg JP, Watt FM. Manipulation of stem cell proliferation and lineage commitment in mouse epidermis: Visualisation of label-retaining cells in whole mounts of mouse epidermis. Development 2003; 130:5241 - 5255
  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281:1509 - 1512
  • Clevers H. Wnt/beta-catenin signalling in development and disease. Cell 2006; 127:469 - 480
  • Lo Celso C, Berta MA, Braun KM, Frye M, Lyle S, Zouboulis CC, Watt FM. Characterization of bipotent epidermal progenitors derived from human sebaceous gland: Contrasting roles of c-myc and β-catenin. Stem Cells 2008; 26:1241 - 1252
  • Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM. Manipulation of stem cell proliferation and lineage commitment: visualisation of label retaining cells in whole mounts of mouse epidermis. Development 2003; 130:5241 - 5255
  • Horsley V, O'Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 2006; 126:597 - 609
  • Sellheyer K, Krahl D. Blimp-1: a marker of terminal differentiation but not of sebocytic progenitor cells. J Cutan Pathol 2010; 37:362 - 370
  • Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Stem Cell 2007; 1:140 - 152
  • Delpuech O, Griffiths B, East P, Essafi A, Lam EW, Burgering B, et al. Induction of Mxi1-SRalpha by FOXO3a contributes to repression of Myc-dependent gene expression. Mol Cell Biol 2007; 27:4917 - 4930
  • Chandramohan V, Jeay S, Pianetti S, Sonenshein GE. Reciprocal control of forkhead box O 3a and c-myc via the phosphatidylinositol-3-kinase pathway coordinately regulates p27Kip1 levels. J Immunol 2004; 172:5522 - 5527
  • Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol 2000; 20:9138 - 9148
  • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13:1501 - 1512
  • Medema RH, Kops GJ, Bos JL, Burgering BM. AFX-like Forkhead transcription factors mediate cell cycle regulation by Ras and PKB through p27kip1. Nature 2000; 404:782 - 787
  • Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 2000; 20:8969 - 8982
  • Burgering BM, Kops GJ. Cell cycle and death control: long live Forkheads. Trends Biochem Sci 2002; 27:352 - 360
  • Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N. FOXO transcription factors in cell cycle regulation and the response to oxidative stress. Antioxid Redox Signal 2005; 7:752 - 760
  • Martinez-Gac L, Marques M, Garcia Z, Campanero MR, Carrera AC. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide-3-kinase and forkhead. Mol Cell Biol 2004; 24:2181 - 2189
  • Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Stem Cell 2008; 3:33 - 43
  • Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/β-catenin signaling in development and disease. Dev Dynamics 2010; 239:56 - 68
  • Bastide P, Darido C, Pannequin J, Kist R, Robine S, Marty-Double C, et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol 2007; 178:635 - 648
  • Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway and represses the CDX2 and MUC2 genes. J Cell Biol 2004; 166:37 - 47
  • Merrill BJ, Gat U, DasGupta R, Fuchs E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 2001; 15:1688 - 1705
  • Niemann C, Owens DM, Hülsken J, Birchmeier W, Watt FM. Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicle keratinocytes into squamous epidermal cysts and formation of skin tumours. Development 2002; 129:95 - 109
  • Takeda H, Lyle S, Lazar AFJ, Zouboulis CC, Smyth I, Watt FM. Human sebaceous tumors harbour inactivating mutations in Lef1. Nat Med 2006; 12:395 - 397
  • Han G, Li AG, Liang YY, Owens P, He W, Lu S, et al. Smad7-induced β-catenin degradation alters epidermal appendage development. Dev Cell 2006; 11:301 - 312
  • Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo. J Invest Dermatol 2002; 119:499 - 506
  • Manolagas SC, Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O and oxidative stress in age-dependent diseases of bone, lipid and glucose metabolism. Mol Endocrinol 2007; 21:2605 - 2614
  • Beildeck ME, Gelmann EP, Byers SW. Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp Cell Res 2010; 316:1763 - 1772
  • Easwaran V, Pishvaian M, Salimuddin, Byers S. Cross-regulation of beta-catenin-LEF/TCF and retinoid signaling pathways. Curr Biol 1999; 9:1415 - 1418
  • Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC. Interaction of nuclear receptors with the Wnt/betacatenin/Tcf signaling axis: Wnt you like to know?. Endocr Rev 2005; 26:898 - 915
  • Chesire DR, Isaacs WB. Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor. Oncogene 2002; 21:8453 - 8469
  • Song LN, Herrell R, Byers S, Shah S, Wilson EM. Gelmann EP Beta-catenin binds to the activation function 2 region of the androgen receptor and modulates the effects of the N-terminal domain and TIF2 on ligand-dependent transcription. Mol Cell Biol 2003; 23:1674 - 1687
  • Mulholland DJ, Read JT, Rennie PS, Cox ME, Nelson CC. Functional localization and competition between the androgen receptor and T-cell factor for nuclear beta-catenin: a means for inhibition of the Tcf signaling axis. Oncogene 2003; 22:5602 - 5613
  • Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, et al. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289:950 - 953
  • Chen W, Yang CC, Sheu HM, Seltmann H, Zouboulis CC. Expression of peroxisome proliferator-activated receptor and CCA AT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol 2003; 121:441 - 447
  • Nakae J, Kitamura T, Kitamura Y, Biggs WH 3rd, Arden KC, Accili D. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 2003; 4:119 - 129
  • Gerin I, Bommer GT, Lidell ME, Cederberg A, Enerback S, Macdougald OA. On the role of FOX transcription factors in adipocyte differentiation and insulin-stimulated glucose uptake. J Biol Chem 2009; 284:10755 - 10763
  • Armoni M, Harel C, Karni S, Chen H, Bar-Yoseph F, Ver MR, Quon MJ, et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem 2006; 281:19881 - 19891
  • Onai T, Lin HC, Schubert M, Koop D, Osborne PW, Alvarez S, Alvarez R, et al. Retinoic acid and Wnt/betacatenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev Biol 2009; 332:223 - 233
  • Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 2005; 308:1181 - 1184
  • Jin T, Fantus GI, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of β-catenin. Cell Signal 2008; 20:1697 - 1704
  • Hoogeboom D, Essers MAG, Polderman PE, Voets E, Smits LMM, Burgering BMT. Interaction of FOXO with β-catenin inhibits β-catenin/T cell factor activity. J Biol Chem 2008; 283:9224 - 9230
  • Kang S, Cho S, Chung JH, Hammerberg C, Fisher GJ, Voorhees JJ. Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor κB and activator protein-1 in inflammatory acne lesions in in vivo. Am J Pathol 2005; 166:1691 - 1699
  • Papakonstantinou E, Aletras AJ, Glass E, Tsogas P, Dionyssopoulos A, Adjaye J, et al. Matrix metalloproteinases of epithelial origin in facial sebum of patients with acne and their regulation by isotretinoin. J Invest Dermatol 2005; 125:673 - 684
  • Tanaka H, Murakami Y, Ishii I, Nakata S. Involvement of a forkhead transcription factor, FOXO1A, in UV-induced changes of collagen metabolism. J Invest Dermatol Symp Proc 2009; 14:60 - 62
  • Leyden JJ. Treatment of photodamaged skin with topical tretinoin: an update. Plast Reconstr Surg 1998; 102:1667 - 1671
  • Singh M, Griffiths CE. The use of retinoids in the treatment of photoaging. Dermatol Ther 2006; 19:297 - 305
  • Abid MR, Shih SC, Otu HH, Spokes KC, Okada Y, Curiel DT, et al. A novel class of vascular endothelial growth factor-responsive genes that require forkhead activity for expression. J Biol Chem 2006; 281:35544 - 35553
  • Ganapathy S, Chen Q, Singh KP, Shankar S, Srivastava RK. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One 2010; 5:15627
  • Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, et al. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene 2007; 26:7647 - 7655
  • Li H, Liang J, Castrillon DH, DePinho RA, Olson EN, Liu ZP. FoxO4 regulates tumor necrosis factor alpha-directed smooth muscle cell migration by activating matrix metalloproteinase 9 gene transcription. Mol Cell Biol 2007; 27:2676 - 2686
  • Salminen A, Kaarniranta K. Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NFκB signaling. Cell Signal 2009; 22:573 - 577
  • Perkins ND. Integrating cell-signalling pathways with NFkappaB and IKK function. Nat Rev Moll Cell Biol 2007; 8:49 - 62
  • Vallabhapurapu S, Karin M. Regulation and function of NFκB transcription factors in the immune system. Annu Rev Immunol 2009; 27:693 - 733
  • Jugeau S, Tenaud I, Knol AC, Jarrousse V, Quereux G, Khammari A, et al. Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol 2005; 153:1109 - 1113
  • Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 2002; 169:1535 - 1541
  • Nagy I, Pivarcsi A, Koreck A, Széll M, Urbán E, Kemény L. Distinct strains of Propionibacterium acnes indcuce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 2005; 124:931 - 939
  • Kim J. Review of the innate immune response in acne vulgaris: Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 2005; 211:193 - 198
  • Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, et al. Toll-like receptor 2-mediated NFkappaB activation requires a Rac1-dependent pathway. Nat Immunol 2000; 1:533 - 540
  • Li X, Jiang S, Tapping RI. Toll-like receptor signaling in cell proliferation and survival. Cytokine 2010; 49:1 - 9
  • Laird MH, Rhee SH, Perkins DJ, Medvedev AE, Piao W, Fenton MJ, et al. TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J Leukoc Biol 2009; 85:966 - 977
  • Oeff MK, Seltmann H, Hiroi N, Nastos A, Makrantonaki E, Bornstein SR, et al. Differential regulation of Toll-like receptor and CD14 pathways by retinoids and corticosteroids in human sebocytes. Dermatology 2006; 213:266
  • Iinuma K, Sato T, Akimoto N, Noguchi N, Sasatsu M, Nishijima S, et al. Involvement of Propionibacterium acnes in the augmentation of lipogenesis in hamster sebaceous glands in vivo and in vitro. J Invest Dermatol 2009; 129:2113 - 2119
  • Dejean AS, Hedrick SM, Kerdiles YM. Highly specialized role of Foxo transcription factors in the immune system. Antioxid Redox Signal 2011; 14:663 - 674
  • Gan L, Li L. Regulations and roles of the interleukin-1 receptor associated kinases (IRAKs) in innate and adaptive immunity. Immunol Res 2006; 35:295 - 302
  • Liu PT, Krutzik SR, Kim J, Modlin RL. Cutting edge: all-trans retinoic acid downregulates TLR2 expression and function. J Immunol 2005; 174:2467 - 2470
  • Jeremy AH, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ. Inflammatory events are involved in acne lesion initiation. J Invest Dermatol 2003; 121:20 - 27
  • Kerdiles YM, Beisner DR, Tinoco R, Dejean AS, Castrillon DH, DePinho RA, et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol 2009; 10:176 - 184
  • Akamatsu H, Horio T. The possible role of reactive oxygen species generated by neutrophils in mediating acne inflammation. Dermatology 1998; 196:82 - 85
  • Akamatsu H, Horio T, Hattori K. Increased hydrogen peroxide generation by neutrophils from patients with acne inflammation. Int J Dermatol 2003; 42:366 - 369
  • Kurutas EB, Arican O, Sasmaz S. Superoxide dismutase and myeloperoxidase activities in polymorphonuclear leukocytes in acne vulgaris. Acta Dermatovenerol Alp Panonica Adriat 2005; 14:39 - 42
  • Sarici G, Cinar S, Armutcu F, Altinyazar C, Koca R, Tekin NS. Oxidative stress in acne vulgaris. J Eur Acad Dermatol Venereol 2010; 24:763 - 767
  • Arican O, Kurutas EB, Sasmaz S. Oxidative stress in patients with acne vulgaris. Mediators Inflamm 2005; 2005:380 - 384
  • Bohne M, Struy H, Gerber A, Gollnick H. Effects of retinoids on the generation of neutrophil-derived reactive oxygen species studied by EPR spin trapping techniques. Inflamm Res 1997; 46:423 - 424
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants and aging. Cell 2005; 120:483 - 495
  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002; 419:316 - 321
  • Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 2002; 295:2450 - 2452
  • Cheng Z, Guo S, Copps K, Dong X, Kollipara R, Rodgers JT, et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med 2009; 15:1307 - 1311
  • Penniston KL, Tanumihardjo SA. The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 2006; 83:191 - 201
  • Zane LT, Leyden WA, Marqueling AL, Manos MM. A population-based analysis of laboratory abnormalities during isotretinoin therapy for acne vulgaris. Arch Dermatol 2006; 142:1016 - 1022
  • Heliövaara MK, Remitz A, Reitamo S, Teppo AM, Karonen SL, Ebeling P. 13-cis-Retinoic acid therapy induces insulin resistance, regulates inflammatory parameters and paradoxically increases serum adiponectin concentration. Metabolism 2007; 56:786 - 791
  • Koistinen HA, Remitz A, Gylling H, Miettinen TA, Koivisto VA, Ebeling P. Dyslipidemia and a reversible decrease in insulin sensitivity induced by therapy with 13-cis-retinoic acid. Diabetes Metab Res Rev 2001; 17:391 - 395
  • Guo S, Copps KD, Dong X, Park S, Cheng Z, Pocai A, et al. The Irs1 branch of the insulin signaling cascade plays a dominant role in hepatic nutrient homeostasis. Mol Cell Biol 2009; 29:5070 - 5083
  • Cheng Z, White MF. Foxo1 in hepatic lipid metabolism. Cell Cycle 2010; 9:219 - 220
  • Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 2006; 116:2464 - 2472
  • Converso DP, Taille C, Carreras MC, Jaitovich A, Poderoso JJ, Boczkowski J. HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J 2006; 20:1236 - 1238
  • Schalinske KL, Steele RD. 13-cis-retinoic acid and hepatic steatosis in rats. Biochem Pharmacol 1993; 46:319 - 325
  • Rigobello MP, Scutari G, Friso A, Barzon E, Artusi S, Bindoli A. Mitochondrial permeability transition and release of cytochrome c induced by retinoic acids. Biochem Pharmacol 1999; 58:665 - 670
  • Bershad S, Rubinstein A, Paterniti JR, Le NA, Poliak SC, Heller B, et al. Changes in plasma lipids and lipoproteins during isotretinoin therapy for acne. N Engl J Med 1985; 313:981 - 985
  • Melnik BC, Bros U, Plewig G. Evaluation of the atherogenic risk of isotretinoin-induced and etretinate-induced alterations of lipoprotein cholesterol metabolism. J Invest Dermatol 1987; 88:39 - 43
  • Melnik B, Bros U, Plewig G. Characterization of apoprotein metabolism and atherogenic lipoproteins during oral isotretinoin treatment. Dermatologica 1987; 175:158 - 168
  • Kamagate A, Qu S, Perdomo G, Su D, Kim DH, Slusher S, et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest 2008; 118:2347 - 2364
  • Kamagate A, Dong HH. FoxO1 intergrates insulin signaling to VLDL production. Cell Cycle 2008; 7:3162 - 3170
  • Wang CS, McConathy WJ, Kloer HJ, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins: effect of apolipoprotein C-III. J Clin Invest 1985; 75:384 - 390
  • Vu-Dac N, Gervois P, Torra IP, Fruchart JC, Kosykh V, Kooistra T, et al. Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor. Contribution to the hypertriglyceridemic action of retinoids. J Clin Invest 1998; 102:625 - 632
  • Altomonte J, Cong L, Harbaran S, Richter A, Xu J, Meseck M, et al. Foxo1 mediates insulin action on apo C-III and triglyceride metabolism. J Clin Invest 2004; 114:1493 - 1503
  • McGuire J, Lawson JP. Skeletal changes associated with chronic isotretinoin and etretinate administration. Dermatologica 1987; 175:169 - 181
  • Melnik B, Plewig G. Unwanted bone changes in systemic treatment with synthetic retinoids. Hautarzt 1987; 38:193 - 197
  • Leachman SA, Insogna KL, Katz L, Ellison A, Milstone LM. Bone densities in patients receiving isotretinoin for cystic acne. Arch Dermatol 1999; 135:961 - 965
  • Tekin NS, Ozdolap S, Sarikaya S, Keskin SI. Bone mineral density and bone turnover markers in patients receiving a single course of isotretinoin for nodulocystic acne. Int J Dermatol 2008; 47:622 - 625
  • Ling TC, Parkin G, Islam J, Seukeran DC, Cunliffe WJ. What is the cumulative effect of long-term, low dose isotretinoin on the development of DISH?. Br J Dermatol 2001; 144:630 - 632
  • Hotchkiss CE, Latendresse J, Ferguson SA. Oral treatment with retinoic acid decreases bone mass in rats. Comp Med 2006; 56:502 - 511
  • DiGiovanna JJ. Isotretinoin effects on bone. J Am Acad Dermatol 2001; 45:176 - 182
  • Kolpakova E, Olsen BR. Wnt/β-catenin-a canonical tale of cell-fate choice in the vertebrate skeleton. Dev Cell 2005; 8:626 - 627
  • Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006; 16:151 - 158
  • Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7:885 - 896
  • Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes WNT signaling in osteoblast precursors by diverting β-catenin from T cell factor- to Forkhead box O-mediated transcription. J Biol Chem 2007; 282:27298 - 27305
  • Yasuhara R, Yuasa T, Williams JA, Byers SW, Shah S, Pacifici M, et al. Wnt/β-catenin and retinoic acid receptor signaling pathways interact to regulate chondrocyte function and matrix turnover. J Biol Chem 2010; 285:317 - 327
  • Kaymak Y. Creatine phosphokinase values during isotretinoin treatment for acne. Int J Dermatol 2008; 47:398 - 401
  • Heudes AM, Laroche L. Muscular damage during isotretinoin treatment. Ann Dermatol Venereol 1998; 125:94 - 97
  • Chroni E, Monastirli A, Tsambaos D. Neuromuscular adverse effects associated with systemic retinoid dermatotherapy: monitoring and treatment algorithm for clinicians. Drug Saf 2010; 33:25 - 34
  • Chiba T, Kamei Y, Shimizu T, Shirasawa T, Katsumata A, Shiraishi L, et al. Overexpression of FOXO1 in skeletal muscle does not alter longevity in mice. Mech Ageing Dev 2009; 130:420 - 428
  • Furuyama T, Kitayama K, Yamashita H, Mori N. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 2003; 375:365 - 371
  • Kamei Y, Mizukami J, Miura S, Suzuki M, Takahashi N, Kawada T, et al. A forkhead transcription factor FKHR upregulates lipoprotein lipase expression in skeletal muscle. Growth Regul 2003; 536:232 - 236
  • Glass DJ. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 2003; 5:87 - 90
  • Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 2008; 23:160 - 170
  • Crossland H, Constantin-Teodosiu D, Gardiner SM, Constantin D, Greenhaff PL. A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle. J Physiol 2008; 586:5589 - 5600
  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del PP, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6:458 - 471
  • Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, et al. Autophagy is required to maintain muscle mass. Cell Metab 2009; 10:507 - 515
  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004; 117:399 - 412
  • Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007; 6:472 - 483
  • Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004; 14:395 - 403
  • Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes and impaired glycemic control. J Biol Chem 2004; 279:41114 - 41123
  • Kamei Y, Miura S, Suganami T, Akaike F, Kanai S, Sugita S, et al. Regulation of SREBP1c gene expression in skeletal muscle: role of retinoid X receptor/liver X receptor and forkhead-O1 transcription factor. Endocrinology 2008; 149:2293 - 2305
  • Bastie CC, Nahle Z, McLoughlin T, Esser K, Zhang W, Unterman T, et al. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. J Biol Chem 2005; 280:14222 - 14229
  • Shalita AR. Mucocutaneous and systemic toxicity of retinoids: monitoring and management. Dermatologica 1987; 175:151 - 157
  • Elias PM, Fritsch PO, Lampe M, Williams ML, Brown BE, Nemanic M, et al. Retinoid effects on epidermal structure, differentiation and permeability. Lab Invest 1981; 44:531 - 540
  • Elias PM. Retinoid effects on the epidermis. Dermatologica 1987; 175:28 - 36
  • Eichner R. Epidermal effects of retinoids: in vitro studies. J Am Acad Dermatol 1986; 15:789 - 797
  • Lee DD, Stojadinovic O, Krzyzanowska A, Vouthounis C, Blumenberg M, Tomic-Canic M. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J Cell Physiol 2009; 220:427 - 439
  • Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol 2005; 125:183 - 200
  • Melnik B. Disturbances of antimicrobial lipids in atopic dermatitis. J Dtsch Dermatol Ges 2006; 4:114 - 123
  • Brown MS, Goldstein JL. Sterol regulatory element binding proteins (SREBPs): controllers of lipid synthesis and cellular uptake. Nutr Rev 1998; 56:1 - 3
  • Smith JR, Osborne TF, Brown MS, Goldstein JL, Gil G. Multiple sterol regulatory elements in promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A synthase. J Biol Chem 1988; 263:18480 - 18487
  • Vallett SM, Sanchez HB, Rosenfeld JM, Osborne TF. A direct role for sterol regulatory element binding protein in activation of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene. J Biol Chem 1996; 271:12247 - 12253
  • Harris IR, Farrell AM, Holleran WM, Jackson S, Grunfeld C, Elias PM, et al. Parallel regulation of sterol regulatory element binding protein-2 and the enzymes of cholesterol and fatty acid synthesis but not ceramide synthesis in cultured human keratinocytes and murine epidermis. J Lipid Res 1998; 39:412 - 422
  • Narce M, Poisson JP. Lipid metabolism. Regulation of lipid metabolism gene expression by peroxisome proliferator-activated receptor alpha and sterol regulatory element binding proteins. Curr Opin Lipidol 2002; 13:445 - 447
  • Holleran WM, Feingold KR, Man MQ, Gao WN, Lee JM, Elias PM. Regulation of epidermal sphingolipid synthesis by permeability barrier function. J Lipid Res 1991; 32:1151 - 1158
  • Kremer I, Gaton DD, David M, Gaton E, Shapiro A. Toxic effects of systemic retinoids on meibomian glands. Ophthalmic Res 1994; 26:124 - 128
  • Lambert RW, Smith RE. Effects of 13-cis-retinoic acid on the hamster meibomian gland. J Invest Dermatol 1989; 92:321 - 325
  • Lambert RW, Smith RE. Pathogenesis of blepharoconjunctivitis complicating 13-cis-retinoic acid (isotretinoin) therapy in a laboratory model. Invest Ophthalmol Vis Sci 1988; 29:1559 - 1564
  • Heilgemeir GP, Braun-Falco O, Plewig G, Sund M. Effect of 13-cis-retinoic acid on hair growth. Hautarzt 1982; 33:533 - 536
  • Williams D, Siock P, Stenn K. 13-cis-Retinoic acid affect sheath-shaft interaction of equine hair follicles in vitro. J Invest Dermatol 1996; 106:356 - 361
  • Foitzik K, Spexard T, Nakamura M, Halsner U, Paus R. Towards dissecting the pathogenesis of retinoidinduced hair loss: all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-beta2 in the dermal papilla. J Invest Dermatol 2005; 124:1119 - 1126
  • Ouji Y, Yoshikawa M, Moriya K, Ishizaka S. Effects of Wnt-10b on hair shaft growth in hair follicle cultures. Biochem Biophys Res Commun 2007; 359:516 - 522
  • Kontaxakis VP, Skourides D, Ferentinos P, Havaki-Kontaxaki BJ, Papadimitriou GN. Isotretinoin and psychopathology: a review. Ann Gen Psych 2009; 8:2
  • O'Reilly KC, Shumake J, Gonzalez-Lima F, Lane MA, Bailey SJ. Chronic administration of 13-cis-retinoic acid increases depression-related behavior in mice. Neuropsychopharmacol 2006; 31:1919 - 1927
  • Zetterstrom RH, Lindqvist E, Mata de Urquiza A. Role of the retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur J Neurosci 1999; 11:407 - 416
  • Krezel W, Kastner P, Chambon P. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 1999; 89:1291 - 1300
  • Duman RS. Depression: a case of neuronal life and death?. Biol Psychiatry 2004; 56:140 - 145
  • Sapolsky RM. Depression, antidepressants and the shrinking hippocampus. Proc Natl Acad Sci USA 2001; 98:12320 - 12322
  • Sakai Y, Crandall JE, Brodsky J, McCaffery P. 13-cis retinoic acid (Accutane) suppresses hippocampal cell survival in mice. Ann NY Acad Sci 2004; 1021:436 - 440
  • Crandall JE, Sakai Y, Zhang J, Koul O, Mineur Y, Crusio WE, McCaffery P. 13-cis retinoic acid suppresses hippocampal cell division and hippocampal-dependent learning in mice. Proc Nat Acad Sci USA 2004; 101:5111 - 5116
  • Griffin JN, Pinali D, Olds K, Lu N, Appleby L, Doan L, et al. 13-Cis-retinoic acid decreases hypothalamic cell number in vitro. Neurosci Res 2010; 68:185 - 190
  • Hoekman MF, Jacobs FM, Smidt MP, Burbach JP. Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns 2006; 6:134 - 140
  • Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci 2006; 9:901 - 906
  • Sasaki T, Kitamura T. Roles of FoxO1 and Sirt1 in the central regulation of food Intake. Endocr J 2010; 57:939 - 946
  • Huang Q, Tatro JB. Alpha-melanocyte stimulating hormone suppresses intracerebral tumor necrosis factor-alpha and interleukin-1beta gene expression following transient cerebral ischemia in mice. Neurosci Lett 2002; 334:186 - 190
  • Zhang L, Anthonavage M, Huang Q, Li WH, Eisinger M. Proopiomelanocortin peptides and sebogenesis. Ann NY Acad Sci 2003; 994:154 - 161
  • Mao Z, Liu L, Zhang R, Li X. Lithium reduces FoxO3a transcriptional activity by decreasing its intracellular content. Biol Psychiatry 2007; 62:1423 - 1430
  • Polter A, Yang S, Zmijewska AA, van Groen T, Paik JH, Depinho RA, et al. Forkhead box, class O transcription factors in brain: regulation and behavioral manifestation. Biol Psychiatry 2009; 65:150 - 159
  • Karadag AS, Ertugrul DT, Tutal E, Akin KO. Isotretinoin influences pituitary hormone levels in acne patients. Acta Derm Venereol 2011; 91:31 - 34
  • Martin C, Bach-Ngohou K, Perrin B, Masson D. Central hypothyroidism associated with bexarotene therapy. Ann Biol Clin (Paris) 2006; 64:331 - 334
  • Sherman SI. Etiology, diagnosis and treatment recommendations for central hypothyroidism associated with bexarotene therapy for cutaneous T-cell lymphoma. Clin Lymphoma 2003; 3:249 - 252
  • Sherman SI, Gopal J, Haugen BR, Chiu AC, Whaley K, Nowlakha P, Duvic M. Central hypothyroidism associated with retinoid X receptor-selective ligands. N Engl J Med 1999; 340:1075 - 1079
  • Zhang C, Hazarika P, Ni X, Weidner DA, Duvic M. Induction of apoptosis by bexarotene in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. Clin Cancer Res 2002; 8:1234 - 1240
  • Zheng X, Yang Z, Yue Z, Alvarez JD, Sehgal A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc Natl Acad Sci USA 2007; 104:15899 - 15904
  • Coberly S, Lammer E, Alashari M. Retinoic acid embryopathy: Case report and review of literature. Pediatr Pathol Lab Med 1996; 16:823 - 836
  • Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, et al. Retinoic acid embryopathy. N Engl J Med 1985; 313:837 - 841
  • Lynburg MC, Khoury MJ, Lammer EJ, Waller KO, Codero JF, Erickson JD. Sensitivity, specificity and positive predictive value of malformations in isotretinoin embryopathy. Teratology 1990; 42:513 - 519
  • Fernhoff PM, Lammer EJ. Craniofacial features of isotretinoin embryopathy. J Pediatr 1984; 5:595 - 597
  • Maiese K, Chong ZZ, Shang YC, Hou J. Clever cancer strategies with FoxO transcription factors. Cell Cycle 2008; 7:3829 - 3839
  • Maiese K, Chong ZZ, Shang YC. “SLY AS A FOXO”: New paths with forkhead signaling in the brain. Curr Neurovasc Res 2007; 4:295 - 302
  • Evans-Anderson HJ, Alfieri CM, Yutzey KE. Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 2008; 102:686 - 694
  • Johnston MC, Bronsky PT. Animal models for human craniofacial malformations. J Craniofac Genet Dev Biol 1991; 11:227 - 291
  • Watanabe T, Goulding EH, Pratt RM. Alteration in craniofacial growth induced by isotretinoin (13-cis retinoic acid) in mouse whole embryo and primary mesenchymal cell culture. J Craniofac Genet Dev Biol 1988; 8:21 - 33
  • Lammer EJ, Armstrong DL. Morriss-Kay G. Malformations in hindbrain structures among humans exposed to isotretinoin (13-cis-retinoic acid) during early embryogenesis. Retinoids in Normal Development and Teratogenesis 1991; New York Oxford University Press 281 - 295
  • Dencker L, Gustafson AL, Annerwall E, Busch C, Erickson U. Retinoid-binding proteins in craniofacial development. J Craniofac Genet Dev Biol 1991; 11:303 - 314
  • Li S, Lou X, Wang J, Liu B, Ma L, Su Z, et al. Retinoid signaling can repress blastula Wnt signaling and impair dorsal development in Xenopus embryo. Differentiation 2008; 76:897 - 907
  • Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol 2009; 27:1007 - 1013
  • Veal G, Rowbotham S, Boddy A. Pharmacokinetics and pharmacogenetics of 13-cis-retinoic acid in the treatment of neuroblastoma. Therapy 2007; 62:91 - 93
  • Campbell RM, DiGiovanna JJ. Skin cancer chemoprevention with systemic retinoids: an adjunct in the management of selected high-risk patients. Dermatol Ther 2006; 19:306 - 314
  • Kraemer KH, DiGiovanna JJ, Moshell AN, Tarone RE, Peck GL. Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N Engl J Med 1988; 318:1633 - 1637
  • Jones E, Korzenko A, Kriegel D. Oral isotretinoin in the treatment and prevention of cutaneous squamous cell carcinoma. J Drugs Dermatol 2004; 3:498 - 500
  • Armstrong JL, Redfern CP, Veal GA. 13-cis retinoic acid and isomerization in paediatric oncology—is changing shape the key to success?. Biochem Pharmacol 2005; 69:1299 - 1306
  • Guruvayoorappan C, Pradeep CR, Kuttan G. 13 cisretinoic acid mediates apoptosis in Dalton's lymphoma ascites cells by regulating gene expression. J Basic Clin Physiol Pharmacol 2007; 18:267 - 276
  • Guruvayoorappan C, Pradeep CR, Kuttan G. 13-cisretinoic acid induces apoptosis by modulating caspase-3, bcl-2 and p53 gene expression and regulates the activation of transcription factors in B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol 2008; 27:197 - 207
  • Yuza Y, Agawa M, Matsuzaki M, Yamada H, Urashima M. Gene and protein expression profiling during differentiation of neuroblastoma cells triggered by 13-cis retinoic acid. J Pediatr Hematol Oncol 2003; 25:715 - 720
  • Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14:219 - 227
  • Maiese K, Chong ZZ, Li F, Shang YC. Erythropoietin: Elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 2008; 85:194 - 191
  • Bouchard C, Lee S, Paulus-Hock V, Loddenkemper C, Eilers M, Schmitt CA. FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev 2007; 21:2775 - 2787
  • Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 2002; 277:47928 - 47937
  • Li Y, Wang Z, Kong D, Murthy S, Dou QP, Sheng S, et al. Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem 2007; 282:21542 - 21550
  • Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP. Identification of a tumour suppressor network opposing nuclear Akt function. Nature 2006; 441:523 - 527
  • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128:309 - 323
  • Ticchioni M, Essafi M, Jeandel PY, Davi F, Cassuto JP, Deckert M, et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a. Oncogene 2007; 26:7081 - 7091
  • Kikuchi S, Nagai T, Kunitama M, Kirito K, Ozawa K, Komatsu N. Active FKHRL1 overcomes imatinib resistance in chronic myelogenous leukemia-derived cell lines via the production of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Sci 2007; 98:1949 - 1958
  • Munoz-Fontela C, Marcos-Villar L, Gallego P, Arroyo J, Da Costa M, Pomeranz KM, et al. Latent protein LANA2 from Kaposi's sarcoma-associated herpesvirus interacts with 14-3-3 proteins and inhibits FOXO3a transcription factor. J Virol 2007; 81:1511 - 1516
  • Hoekstra AV, Ward EC, Hardt JL, Lurain JR, Singh DK, Buttin BM, et al. Chemosensitization of endometrial cancer cells through AKT inhibition involves FOXO1. Gynecol Oncol 2008; 108:609 - 618
  • Melnik BC. Acneigenic stimuli converge in phosphoinositol-3-kinase/Akt/FoxO1 signal transduction. J Clin Exp Dermatol 2010; 1:101
  • Sutcliffe S, Giovannucci E, Isaacs WB, Willett WC, Platz EA. Acne and risk of prostate cancer. Int J Cancer 2007; 121:2688 - 2692
  • Kauppinen-Mäkelin R, Sane T, Välimäki MJ, Markkanen H, Niskanen L, Ebeling T, et al. Increased cancer incidence in acromegaly—a nationwide survey. Clin Endocrinol (Oxf) 2010; 72:278 - 279
  • Chittenden BG, Fullerton G, Maheshwari A, Bhattacharya S. Polycystic ovary syndrome and the risk of gynaecological cancer: a systematic review. Reprod Biomed Online 2009; 19:398 - 405
  • Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 2007; 26:7158 - 7162
  • Rouzier C, Soler C, Hofman P, Brennetot C, Bieth E, Pedeutour F. Ovarian dysgerminoma and Apert syndrome. Pediatr Blood Cancer 2008; 50:696 - 698
  • Andreou A, Lamy A, Layet V, Cailliez D, Gobet F, Pfister C, et al. Early-onset low-grade papillary carcinoma of the bladder associated with Apert syndrome and a germline FGFR2 mutation (Pro253Arg). Am J Med Genet 2006; 140:2245 - 2257
  • Melnik BC. Role of FGFR2-signaling in the pathogenesis of acne. Dermatoendocrinol 2009; 1:141 - 156
  • Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nature Rev Cancer 2008; 8:915 - 928
  • Melnik BC. Milk signalling in the pathogenesis of type 2 diabetes. Med Hypotheses 2011; 76:553 - 559
  • Ahmed Z, Schuller AC, Suhling K, Tregidgo C, Ladbury JE. Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem J 2008; 413:37 - 49
  • Melnik BC, Vakilzadeh F, Aslanidis C, Schmitz G. Unilateral segmental acneiform naevus: a model disorder towards understanding fibroblast growth factor receptor 2 function in acne?. Br J Dermatol 2008; 158:1397 - 1399
  • Cuerda E, del Pozo J, Rodrìguez-Lozano J, Peña-Penabad C, Fonseca E. Acne in Apert's syndrome: treatment with isotretinoin. J Dermatolog Treat 2003; 14:43 - 45
  • Campanati A, Marconi B, Penna L, Paolinelli M, Offidani A. Pronounced and early acne in Apert's syndrome: a case successfully treated with oral isotretinoin. Eur J Dermatol 2002; 12:496 - 498
  • Downs AM, Condon CA, Tan R. Isotretinoin therapy for antibiotic-refractory acne in Apert's syndrome. Clin Exp Dermatol 1999; 24:461 - 463