8,289
Views
79
CrossRef citations to date
0
Altmetric
Review

Dietary intervention in acne

Attenuation of increased mTORC1 signaling promoted by Western diet

Pages 20-32 | Received 30 Oct 2011, Accepted 20 Feb 2012, Published online: 01 Jan 2012

References

  • James WD. Clinical practice. Acne. N Engl J Med 2005; 352:1463 - 72; http://dx.doi.org/10.1056/NEJMcp033487; PMID: 15814882
  • Collier CN, Harper JC, Cafardi JA, Cantrell WC, Wang W, Foster KW, et al. The prevalence of acne in adults 20 years and older. J Am Acad Dermatol 2008; 58:56 - 9; http://dx.doi.org/10.1016/j.jaad.2007.06.045; PMID: 17945383
  • Cordain L, Lindeberg S, Hurtado M, Hill K, Eaton SB, Brand-Miller J. Acne vulgaris: a disease of Western civilization. Arch Dermatol 2002; 138:1584 - 90; http://dx.doi.org/10.1001/archderm.138.12.1584; PMID: 12472346
  • Lindeberg S, Eliasson M, Lindahl B, Ahrén B. Low serum insulin in traditional Pacific Islanders--the Kitava Study. Metabolism 1999; 48:1216 - 9; http://dx.doi.org/10.1016/S0026-0495(99)90258-5; PMID: 10535381
  • Smith RN, Mann NJ, Braue A, Mäkeläinen H, Varigos GA. A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial. Am J Clin Nutr 2007; 86:107 - 15; PMID: 17616769
  • Smith RN, Braue A, Varigos GA, Mann NJ. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides. J Dermatol Sci 2008; 50:41 - 52; http://dx.doi.org/10.1016/j.jdermsci.2007.11.005; PMID: 18178063
  • Smith RN, Mann NJ, Braue A, Mäkeläinen H, Varigos GA. The effect of a high-protein, low glycemic-load diet versus a conventional, high glycemic-load diet on biochemical parameters associated with acne vulgaris: a randomized, investigator-masked, controlled trial. J Am Acad Dermatol 2007; 57:247 - 56; http://dx.doi.org/10.1016/j.jaad.2007.01.046; PMID: 17448569
  • Smith R, Mann NJ, Mäkeläinen H, Roper J, Braue A, Varigos G. A pilot study to determine the short-term effects of a low glycemic load diet on hormonal markers of acne: a nonrandomized, parallel, controlled feeding trial. Mol Nutr Food Res 2008; 52:718 - 26; http://dx.doi.org/10.1002/mnfr.200700307; PMID: 18496812
  • Adebamowo CA, Spiegelman D, Danby FW, Frazier AL, Willett WC, Holmes MD. High school dietary dairy intake and teenage acne. J Am Acad Dermatol 2005; 52:207 - 14; http://dx.doi.org/10.1016/j.jaad.2004.08.007; PMID: 15692464
  • Adebamowo CA, Spiegelman D, Berkey CS, Danby FW, Rockett HH, Colditz GA, et al. Milk consumption and acne in adolescent girls. Dermatol Online J 2006; 12:1 - 12; PMID: 17083856
  • Adebamowo CA, Spiegelman D, Berkey CS, Danby FW, Rockett HH, Colditz GA, et al. Milk consumption and acne in teenaged boys. J Am Acad Dermatol 2008; 58:787 - 93; http://dx.doi.org/10.1016/j.jaad.2007.08.049; PMID: 18194824
  • Jung JY, Yoon MY, Min SU, Hong JS, Choi YS, Suh DH. The influence of dietary patterns on acne vulgaris in Koreans. Eur J Dermatol 2010; 20:768 - 72; PMID: 20822969
  • Spencer EH, Ferdowsian HR, Barnard ND. Diet and acne: a review of the evidence. Int J Dermatol 2009; 48:339 - 47; http://dx.doi.org/10.1111/j.1365-4632.2009.04002.x; PMID: 19335417
  • Melnik B. [Acne vulgaris. Role of diet]. Hautarzt 2010; 61:115 - 25; http://dx.doi.org/10.1007/s00105-009-1831-0; PMID: 20107753
  • Danby FW. Nutrition and acne. Clin Dermatol 2010; 28:598 - 604; http://dx.doi.org/10.1016/j.clindermatol.2010.03.017; PMID: 21034984
  • Melnik BC. Evidence for acne-promoting effects of milk and other insulinotropic dairy products. Nestle Nutr Workshop Ser Pediatr Program 2011; 67:131 - 45; http://dx.doi.org/10.1159/000325580; PMID: 21335995
  • Bowe WP, Joshi SS, Shalita AR. Diet and acne. J Am Acad Dermatol 2010; 63:124 - 41; http://dx.doi.org/10.1016/j.jaad.2009.07.043; PMID: 20338665
  • Veith WB, Silverberg NB. The association of acne vulgaris with diet. Cutis 2011; 88:84 - 91; PMID: 21916275
  • Danby FW. New, relevant information and innovative interventions in the management of acne. G Ital Dermatol Venereol 2011; 146:197 - 210; PMID: 21566550
  • Danby FW. Acne: Diet and acneigenesis. Indian Dermatol Online J 2011; 2:2 - 5; http://dx.doi.org/10.4103/2229-5178.79851
  • Bowers J. Diet & acne. Role of food remains controversial. Dermatology World 2011; 2011:31 - 4
  • Inoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005; 69:79 - 100; http://dx.doi.org/10.1128/MMBR.69.1.79-100.2005; PMID: 15755954
  • Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell 2007; 12:487 - 502; http://dx.doi.org/10.1016/j.devcel.2007.03.020; PMID: 17419990
  • Wang X, Proud CG. Nutrient control of TORC1, a cell-cycle regulator. Trends Cell Biol 2009; 19:260 - 7; http://dx.doi.org/10.1016/j.tcb.2009.03.005; PMID: 19419870
  • Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40:310 - 22; http://dx.doi.org/10.1016/j.molcel.2010.09.026; PMID: 20965424
  • Suzuki T, Inoki K. Spatial regulation of the mTORC1 system in amino acids sensing pathway. Acta Biochim Biophys Sin (Shanghai) 2011; 43:671 - 9; http://dx.doi.org/10.1093/abbs/gmr066; PMID: 21785113
  • Wang X, Proud CG. mTORC1 signaling: what we still don’t know. J Mol Cell Biol 2011; 3:206 - 20; http://dx.doi.org/10.1093/jmcb/mjq038; PMID: 21138990
  • Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 2009; 196:65 - 80; http://dx.doi.org/10.1111/j.1748-1716.2009.01972.x; PMID: 19245654
  • Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 2009; 296:E592 - 602; http://dx.doi.org/10.1152/ajpendo.90645.2008; PMID: 18765678
  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496 - 501; http://dx.doi.org/10.1126/science.1157535; PMID: 18497260
  • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141:290 - 303; http://dx.doi.org/10.1016/j.cell.2010.02.024; PMID: 20381137
  • Goberdhan DCI. Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target?. Curr Opin Investig Drugs 2010; 11:1360 - 7; PMID: 21154118
  • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4:648 - 57; http://dx.doi.org/10.1038/ncb839; PMID: 12172553
  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002; 10:151 - 62; http://dx.doi.org/10.1016/S1097-2765(02)00568-3; PMID: 12150915
  • Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A 2002; 99:13571 - 6; http://dx.doi.org/10.1073/pnas.202476899; PMID: 12271141
  • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115:577 - 90; http://dx.doi.org/10.1016/S0092-8674(03)00929-2; PMID: 14651849
  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30:214 - 26; http://dx.doi.org/10.1016/j.molcel.2008.03.003; PMID: 18439900
  • Melnik BC. FoxO1 - the key for the pathogenesis and therapy of acne?. J Dtsch Dermatol Ges 2010; 8:105 - 14; http://dx.doi.org/10.1111/j.1610-0387.2010.07344.x; PMID: 20151947
  • Melnik BC. The role of transcription factor FoxO1 in the pathogenesis of acne vulgaris and the mode of isotretinoin action. G Ital Dermatol Venereol 2010; 145:559 - 71; PMID: 20930691
  • Melnik BC. Isotretinoin and FoxO1: A scientific hypothesis. Dermatoendocrinol 2011; 3:141 - 65; PMID: 22110774
  • Hay N. Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta 2011; 1813:1965 - 70; http://dx.doi.org/10.1016/j.bbamcr.2011.03.013; PMID: 21440577
  • Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabolism. Curr Diab Rep 2009; 9:208 - 14; http://dx.doi.org/10.1007/s11892-009-0034-5; PMID: 19490822
  • Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I, et al. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 2010; 18:592 - 604; http://dx.doi.org/10.1016/j.devcel.2010.03.008; PMID: 20412774
  • Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 2007; 282:30107 - 19; http://dx.doi.org/10.1074/jbc.M705325200; PMID: 17711846
  • Cao Y, Kamioka Y, Yokoi N, Kobayashi T, Hino O, Onodera M, et al. Interaction of FoxO1 and TSC2 induces insulin resistance through activation of the mammalian target of rapamycin/p70 S6K pathway. J Biol Chem 2006; 281:40242 - 51; http://dx.doi.org/10.1074/jbc.M608116200; PMID: 17077083
  • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998; 273:14484 - 94; http://dx.doi.org/10.1074/jbc.273.23.14484; PMID: 9603962
  • Long X, Ortiz-Vega S, Lin Y, Avruch J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 2005; 280:23433 - 6; http://dx.doi.org/10.1074/jbc.C500169200; PMID: 15878852
  • Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 2005; 102:14238 - 43; http://dx.doi.org/10.1073/pnas.0506925102; PMID: 16176982
  • Dennis MD, Baum JI, Kimball SR, Jefferson LS. Mechanisms involved in the coordinate regulation of mTORC1 by insulin and amino acids. J Biol Chem 2011; 286:8287 - 96; http://dx.doi.org/10.1074/jbc.M110.209171; PMID: 21239491
  • Zick Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005; 2005:pe4; http://dx.doi.org/10.1126/stke.2682005pe4; PMID: 15671481
  • Altamirano F, Oyarce C, Silva P, Toyos M, Wilson C, Lavandero S, et al. Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. J Endocrinol 2009; 202:299 - 307; http://dx.doi.org/10.1677/JOE-09-0044; PMID: 19474060
  • Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010; 11:390 - 401; http://dx.doi.org/10.1016/j.cmet.2010.03.014; PMID: 20444419
  • Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett 2008; 582:81 - 9; http://dx.doi.org/10.1016/j.febslet.2007.11.018; PMID: 18022388
  • Chen W, Obermayer-Pietsch B, Hong JB, Melnik BC, Yamasaki O, Dessinioti C, et al. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol 2011; 25:637 - 46; http://dx.doi.org/10.1111/j.1468-3083.2010.03937.x; PMID: 21198949
  • Ghosh S, Lau H, Simons BW, Powell JD, Meyers DJ, De Marzo AM, et al. PI3K/mTOR signaling regulates prostatic branching morphogenesis. Dev Biol 2011; 360:329 - 42; http://dx.doi.org/10.1016/j.ydbio.2011.09.027; PMID: 22015718
  • Wheelhouse NM, Stubbs AK, Lomax MA, MacRae JC, Hazlerigg DG. Growth hormone and amino acid supply interact synergistically to control insulin-like growth factor-I production and gene expression in cultured ovine hepatocytes. J Endocrinol 1999; 163:353 - 61; http://dx.doi.org/10.1677/joe.0.1630353; PMID: 10556786
  • Rich-Edwards JW, Ganmaa D, Pollak MN, Nakamoto EK, Kleinman K, Tserendolgor U, et al. Milk consumption and the prepubertal somatotropic axis. Nutr J 2007; 6:28; http://dx.doi.org/10.1186/1475-2891-6-28; PMID: 17900364
  • Norat T, Dossus L, Rinaldi S, Overvad K, Grønbaek H, Tjønneland A, et al. Diet, serum insulin-like growth factor-I and IGF-binding protein-3 in European women. Eur J Clin Nutr 2007; 61:91 - 8; http://dx.doi.org/10.1038/sj.ejcn.1602494; PMID: 16900085
  • Crowe FL, Key TJ, Allen NE, Appleby PN, Roddam A, Overvad K, et al. The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev 2009; 18:1333 - 40; http://dx.doi.org/10.1158/1055-9965.EPI-08-0781; PMID: 19423514
  • Horton R, Pasupuletti V, Antonipillai I. Androgen induction of steroid 5 α-reductase may be mediated via insulin-like growth factor-I. Endocrinology 1993; 133:447 - 51; http://dx.doi.org/10.1210/en.133.2.447; PMID: 8344190
  • Hamdi MM, Mutungi G. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism. J Physiol 2011; 589:3623 - 40; http://dx.doi.org/10.1113/jphysiol.2011.207175; PMID: 21606113
  • Melnik B, Jansen T, Grabbe S. Abuse of anabolic-androgenic steroids and bodybuilding acne: an underestimated health problem. J Dtsch Dermatol Ges 2007; 5:110 - 7; http://dx.doi.org/10.1111/j.1610-0387.2007.06176.x; PMID: 17274777
  • Melnik BC. Androgen abuse in the community. Curr Opin Endocrinol Diabetes Obes 2009; 16:218 - 23; http://dx.doi.org/10.1097/MED.0b013e32832afdfe; PMID: 19373082
  • Plewig G, Fulton JE, Kligman AM. Cellular dynamics of comedo formation in acne vulgaris. Arch Dermatol Forsch 1971; 242:12 - 29; http://dx.doi.org/10.1007/BF00595286; PMID: 4258128
  • Squarize CH, Castilho RM, Bugge TH, Gutkind JS. Accelerated wound healing by mTOR activation in genetically defined mouse models. PLoS One 2010; 5:e10643; http://dx.doi.org/10.1371/journal.pone.0010643; PMID: 20498714
  • Schroeder M, Zouboulis CC. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes. Horm Metab Res 2007; 39:136 - 40; http://dx.doi.org/10.1055/s-2007-961813; PMID: 17326009
  • Rosner M, Hanneder M, Siegel N, Valli A, Fuchs C, Hengstschläger M. The mTOR pathway and its role in human genetic diseases. Mutat Res 2008; 659:284 - 92; http://dx.doi.org/10.1016/j.mrrev.2008.06.001; PMID: 18598780
  • Torrelo A, Hadj-Rabia S, Colmenero I, Piston R, Sybert VP, Hilari-Carbonell H, et al. Folliculocystic and collagen hamartoma of tuberosus sclerosis complex. J Am Acad Dermatol 2011; 66:617 - 21; http://dx.doi.org/10.1016/j.jaad.2011.04.002
  • Porstmann T, Santos CR, Lewis C, Griffiths B, Schulze A. A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem Soc Trans 2009; 37:278 - 83; http://dx.doi.org/10.1042/BST0370278; PMID: 19143646
  • Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39:171 - 83; http://dx.doi.org/10.1016/j.molcel.2010.06.022; PMID: 20670887
  • Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci U S A 2010; 107:3441 - 6; http://dx.doi.org/10.1073/pnas.0914798107; PMID: 20133650
  • Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146:408 - 20; http://dx.doi.org/10.1016/j.cell.2011.06.034; PMID: 21816276
  • Rosenthal J, Angel A, Farkas J. Metabolic fate of leucine: a significant sterol precursor in adipose tissue and muscle. Am J Physiol 1974; 226:411 - 8; PMID: 4855772
  • Wheatley VR. Cutaneous lipogenesis. Major pathways of carbon flow and possible interrelationships between the epidermis and sebaceous glands. J Invest Dermatol 1974; 62:245 - 56; http://dx.doi.org/10.1111/1523-1747.ep12676798; PMID: 4150450
  • Cassidy DM, Lee CM, Laker MF, Kealey T. Lipogenesis in isolated human sebaceous glands. FEBS Lett 1986; 200:173 - 6; http://dx.doi.org/10.1016/0014-5793(86)80533-6; PMID: 3516725
  • Jeremy AH, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ. Inflammatory events are involved in acne lesion initiation. J Invest Dermatol 2003; 121:20 - 7; http://dx.doi.org/10.1046/j.1523-1747.2003.12321.x; PMID: 12839559
  • Pierdominici M, Vacirca D, Delunardo F, Ortona E. mTOR signaling and metabolic regulation of T cells: new potential therapeutic targets in autoimmune diseases. Curr Pharm Des 2011; 17:3888 - 97; http://dx.doi.org/10.2174/138161211798357809; PMID: 21933144
  • Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010; 33:301 - 11; http://dx.doi.org/10.1016/j.immuni.2010.09.002; PMID: 20870173
  • Yang K, Neale G, Green DR, He W, Chi H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 2011; 12:888 - 97; http://dx.doi.org/10.1038/ni.2068; PMID: 21765414
  • Young CN, Koepke JI, Terlecky LJ, Borkin MS, Boyd Savoy L, Terlecky SR. Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol 2008; 128:2606 - 14; http://dx.doi.org/10.1038/jid.2008.122; PMID: 18463678
  • Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, et al. IKK β suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 2007; 130:440 - 55; http://dx.doi.org/10.1016/j.cell.2007.05.058; PMID: 17693255
  • Edrees AF, Kaplan DL, Abdou NI. Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome (PAPA syndrome) associated with hypogammaglobulinemia and elevated serum tumor necrosis factor-alpha levels. J Clin Rheumatol 2002; 8:273 - 5; http://dx.doi.org/10.1097/00124743-200210000-00009; PMID: 17041385
  • Cortis E, De Benedetti F, Insalaco A, Cioschi S, Muratori F, D’Urbano LE, et al. Abnormal production of tumor necrosis factor (TNF) -- alpha and clinical efficacy of the TNF inhibitor etanercept in a patient with PAPA syndrome [corrected]. J Pediatr 2004; 145:851 - 5; http://dx.doi.org/10.1016/j.jpeds.2004.08.001; PMID: 15580218
  • Tofteland ND, Shaver TS. Clinical efficacy of etanercept for treatment of PAPA syndrome. J Clin Rheumatol 2010; 16:244 - 5; http://dx.doi.org/10.1097/RHU.0b013e3181e969b9; PMID: 20661073
  • Pearce EL. Metabolism in T cell activation and differentiation. Curr Opin Immunol 2010; 22:314 - 20; http://dx.doi.org/10.1016/j.coi.2010.01.018; PMID: 20189791
  • Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005; 5:844 - 52; http://dx.doi.org/10.1038/nri1710; PMID: 16239903
  • Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity 2007; 27:173 - 8; http://dx.doi.org/10.1016/j.immuni.2007.07.008; PMID: 17723208
  • Fumarola C, La Monica S, Guidotti GG. Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: Role of glutamine and of cell shrinkage. J Cell Physiol 2005; 204:155 - 65; http://dx.doi.org/10.1002/jcp.20272; PMID: 15605414
  • Hidayat S, Yoshino K, Tokunaga C, Hara K, Matsuo M, Yonezawa K. Inhibition of amino acid-mTOR signaling by a leucine derivative induces G1 arrest in Jurkat cells. Biochem Biophys Res Commun 2003; 301:417 - 23; http://dx.doi.org/10.1016/S0006-291X(02)03052-8; PMID: 12565877
  • Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. J Immunol 2009; 183:6095 - 101; http://dx.doi.org/10.4049/jimmunol.0803510; PMID: 19841171
  • Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 1999; 162:2775 - 84; PMID: 10072524
  • Cham CM, Driessens G, O’Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 2008; 38:2438 - 50; http://dx.doi.org/10.1002/eji.200838289; PMID: 18792400
  • Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A 2009; 106:12055 - 60; http://dx.doi.org/10.1073/pnas.0903919106; PMID: 19567830
  • Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 2011; 13:170 - 82; http://dx.doi.org/10.1016/j.cmet.2011.01.001; PMID: 21284984
  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004; 18:2893 - 904; http://dx.doi.org/10.1101/gad.1256804; PMID: 15545625
  • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008; 22:239 - 51; http://dx.doi.org/10.1101/gad.1617608; PMID: 18198340
  • Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR. Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 2006; 281:39128 - 34; http://dx.doi.org/10.1074/jbc.M610023200; PMID: 17074751
  • Gray S, Wang B, Orihuela Y, Hong EG, Fisch S, Haldar S, et al. Regulation of gluconeogenesis by Krüppel-like factor 15. Cell Metab 2007; 5:305 - 12; http://dx.doi.org/10.1016/j.cmet.2007.03.002; PMID: 17403374
  • Cordain L, Eades MR, Eades MD. Hyperinsulinemic diseases of civilization: more than just Syndrome X. Comp Biochem Physiol A Mol Integr Physiol 2003; 136:95 - 112; http://dx.doi.org/10.1016/S1095-6433(03)00011-4; PMID: 14527633
  • Gerrior S, Bente L.. Nutrient Content of the U.S. Food Supply, 1909-99: A Summary Report. U.S. Department of Agriculture, Center for Nutrition Policy and Promotion. Home Economics Report2002; No. 55.
  • Cordain L. Implications for the role of diet in acne. Semin Cutan Med Surg 2005; 24:84 - 91; http://dx.doi.org/10.1016/j.sder.2005.04.002; PMID: 16092796
  • Melnik BC. Milk signalling in the pathogenesis of type 2 diabetes. Med Hypotheses 2011; 76:553 - 9; http://dx.doi.org/10.1016/j.mehy.2010.12.017; PMID: 21251764
  • Nilsson M, Holst JJ, Björck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 2007; 85:996 - 1004; PMID: 17413098
  • Hoyt G, Hickey MS, Cordain L. Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk. Br J Nutr 2005; 93:175 - 7; http://dx.doi.org/10.1079/BJN20041304; PMID: 15788109
  • Hoppe C, Mølgaard C, Vaag A, Barkholt V, Michaelsen KF. High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. Eur J Clin Nutr 2005; 59:393 - 8; http://dx.doi.org/10.1038/sj.ejcn.1602086; PMID: 15578035
  • Millward DJ, Layman DK, Tomé D, Schaafsma G. Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr 2008; 87:1576S - 81S; PMID: 18469291
  • Fulgoni VL 3rd. Current protein intake in America: analysis of the National Health and Nutrition Examination Survey, 2003-2004. Am J Clin Nutr 2008; 87:1554S - 7S; PMID: 18469286
  • Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol 2009; 18:833 - 41; http://dx.doi.org/10.1111/j.1600-0625.2009.00924.x; PMID: 19709092
  • Smith TM, Gilliland K, Clawson GA, Thiboutot D. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol 2008; 128:1286 - 93; http://dx.doi.org/10.1038/sj.jid.5701155; PMID: 17989724
  • Ben-Amitai D, Laron Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J Eur Acad Dermatol Venereol 2011; 25:950 - 4; http://dx.doi.org/10.1111/j.1468-3083.2010.03896.x; PMID: 21054577
  • Fan W, Yanase T, Morinaga H, Okabe T, Nomura M, Daitoku H, et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J Biol Chem 2007; 282:7329 - 38; http://dx.doi.org/10.1074/jbc.M610447200; PMID: 17202144
  • Ma Q, Fu W, Li P, Nicosia SV, Jenster G, Zhang X, et al. FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment. Mol Endocrinol 2009; 23:213 - 25; http://dx.doi.org/10.1210/me.2008-0147; PMID: 19074551
  • Karadag AS, Ertugrul DT, Tutal E, Akin KO. Short-term isotretinoin treatment decreases insulin-like growth factor-1 and insulin-like growth factor binding protein-3 levels: does isotretinoin affect growth hormone physiology?. Br J Dermatol 2010; 162:798 - 802; http://dx.doi.org/10.1111/j.1365-2133.2009.09618.x; PMID: 20128787
  • Nelson AM, Gilliland KL, Cong Z, Thiboutot DM. 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol 2006; 126:2178 - 89; http://dx.doi.org/10.1038/sj.jid.5700289; PMID: 16575387
  • Melnik B. Acne and genetics. In: Zouboulis CC, Katsabas AD, Kligman AM (eds) Acne vulgaris and Rosacea: Pathogenesis and Treatment. Spinger, Heidelberg, 2012; In press.
  • Pasquali R, Gambineri A. Insulin-sensitizing agents in women with polycystic ovary syndrome. Fertil Steril 2006; 86:Suppl 1 S28 - 9; http://dx.doi.org/10.1016/j.fertnstert.2006.04.012; PMID: 16798283
  • Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007; 67:10804 - 12; http://dx.doi.org/10.1158/0008-5472.CAN-07-2310; PMID: 18006825
  • Yang Y. Metformin for cancer prevention. Front Med 2011; 5:115 - 7; http://dx.doi.org/10.1007/s11684-011-0112-3; PMID: 21695613
  • Li D. Metformin as an antitumor agent in cancer prevention and treatment. J Diabetes 2011; 3:320 - 7; http://dx.doi.org/10.1111/j.1753-0407.2011.00119.x; PMID: 21631893
  • McCarty MF. mTORC1 activity as a determinant of cancer risk--rationalizing the cancer-preventive effects of adiponectin, metformin, rapamycin, and low-protein vegan diets. Med Hypotheses 2011; 77:642 - 8; http://dx.doi.org/10.1016/j.mehy.2011.07.004; PMID: 21862237
  • Bo S, Ciccone G, Rosato R, Villois P, Appendino G, Ghigo E, et al. Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab 2012; 14:23 - 9; http://dx.doi.org/10.1111/j.1463-1326.2011.01480.x; PMID: 21812892
  • Marques FZ, Markus MA, Morris BJ. Resveratrol: cellular actions of a potent natural chemical that confers a diversity of health benefits. Int J Biochem Cell Biol 2009; 41:2125 - 8; http://dx.doi.org/10.1016/j.biocel.2009.06.003; PMID: 19527796
  • Zhou H, Luo Y, Huang S. Updates of mTOR inhibitors. Anticancer Agents Med Chem 2010; 10:571 - 81; PMID: 20812900
  • Jiang H, Shang X, Wu H, Gautam SC, Al-Holou S, Li C, et al. Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells. J Exp Ther Oncol 2009; 8:25 - 33; PMID: 19827268
  • Brito PM, Devillard R, Nègre-Salvayre A, Almeida LM, Dinis TC, Salvayre R, et al. Resveratrol inhibits the mTOR mitogenic signaling evoked by oxidized LDL in smooth muscle cells. Atherosclerosis 2009; 205:126 - 34; http://dx.doi.org/10.1016/j.atherosclerosis.2008.11.011; PMID: 19108833
  • Lin JN, Lin VC, Rau KM, Shieh PC, Kuo DH, Shieh JC, et al. Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J Agric Food Chem 2010; 58:1584 - 92; http://dx.doi.org/10.1021/jf9035782; PMID: 19928762
  • Fröjdö S, Cozzone D, Vidal H, Pirola L. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J 2007; 406:511 - 8; http://dx.doi.org/10.1042/BJ20070236; PMID: 17550345
  • Docherty JJ, McEwen HA, Sweet TJ, Bailey E, Booth TD. Resveratrol inhibition of Propionibacterium acnes. J Antimicrob Chemother 2007; 59:1182 - 4; http://dx.doi.org/10.1093/jac/dkm099; PMID: 17449884
  • Fabbrocini G, Staibano S, De Rosa G, Battimiello V, Fardella N, Ilardi G, et al. Resveratrol-containing gel for the treatment of acne vulgaris: a single-blind, vehicle-controlled, pilot study. Am J Clin Dermatol 2011; 12:133 - 41; http://dx.doi.org/10.2165/11530630-000000000-00000; PMID: 21348544
  • Reuter J, Wölfle U, Weckesser S, Schempp C. Which plant for which skin disease? Part 1: Atopic dermatitis, psoriasis, acne, condyloma and herpes simplex. J Dtsch Dermatol Ges 2010; 8:788 - 96; http://dx.doi.org/10.1111/j.1610-0387.2010.07496.x; PMID: 20707875
  • Fowler JF Jr., Woolery-Lloyd H, Waldorf H, Saini R. Innovations in natural ingredients and their use in skin care. J Drugs Dermatol 2010; 9:Suppl S72 - 81, quiz s82-3; PMID: 20626172
  • Reuter J, Merfort I, Schempp CM. Botanicals in dermatology: an evidence-based review. Am J Clin Dermatol 2010; 11:247 - 67; PMID: 20509719
  • Liao S. The medicinal action of androgens and green tea epigallocatechin gallate. Hong Kong Med J 2001; 7:369 - 74; PMID: 11773671
  • Zhang Q, Kelly AP, Wang L, French SW, Tang X, Duong HS, et al. Green tea extract and (-)-epigallocatechin-3-gallate inhibit mast cell-stimulated type I collagen expression in keloid fibroblasts via blocking PI-3K/AkT signaling pathways. J Invest Dermatol 2006; 126:2607 - 13; http://dx.doi.org/10.1038/sj.jid.5700472; PMID: 16841034
  • Van Aller GS, Carson JD, Tang W, Peng H, Zhao L, Copeland RA, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun 2011; 406:194 - 9; http://dx.doi.org/10.1016/j.bbrc.2011.02.010; PMID: 21300025
  • Elsaie ML, Abdelhamid MF, Elsaaiee LT, Emam HM. The efficacy of topical 2% green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol 2009; 8:358 - 64; PMID: 19363854
  • Mahmood T, Akhtar N, Khan BA, Khan HM, Saeed T. Outcomes of 3% green tea emulsion on skin sebum production in male volunteers. Bosn J Basic Med Sci 2010; 10:260 - 4; PMID: 20846135
  • Sutcliffe S, Giovannucci E, Isaacs WB, Willett WC, Platz EA. Acne and risk of prostate cancer. Int J Cancer 2007; 121:2688 - 92; http://dx.doi.org/10.1002/ijc.23032; PMID: 17724724
  • Nardella C, Carracedo A, Alimonti A, Hobbs RM, Clohessy JG, Chen Z, et al. Differential requirement of mTOR in postmitotic tissues and tumorigenesis. Sci Signal 2009; 2:ra2; http://dx.doi.org/10.1126/scisignal.2000189; PMID: 19176516
  • Wang Q, Bailey CG, Ng C, Tiffen J, Thoeng A, Minhas V, et al. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res 2011; 71:7525 - 36; http://dx.doi.org/10.1158/0008-5472.CAN-11-1821; PMID: 22007000
  • Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441:424 - 30; http://dx.doi.org/10.1038/nature04869; PMID: 16724053
  • Dann SG, Selvaraj A, Thomas G. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 2007; 13:252 - 9; http://dx.doi.org/10.1016/j.molmed.2007.04.002; PMID: 17452018
  • Mieulet V, Lamb RF. Tuberous sclerosis complex: linking cancer to metabolism. Trends Mol Med 2010; 16:329 - 35; http://dx.doi.org/10.1016/j.molmed.2010.05.001; PMID: 20605525
  • Proud CG. mTOR signalling in health and disease. Biochem Soc Trans 2011; 39:431 - 6; http://dx.doi.org/10.1042/BST0390431; PMID: 21428914
  • Melnik BC. Milk--the promoter of chronic Western diseases. Med Hypotheses 2009; 72:631 - 9; http://dx.doi.org/10.1016/j.mehy.2009.01.008; PMID: 19232475
  • Melnik BC. Permanent impairment of insulin resistance from pregnancy to adulthood: the primary basic risk factor of chronic Western diseases. Med Hypotheses 2009; 73:670 - 81; http://dx.doi.org/10.1016/j.mehy.2009.04.047; PMID: 19515499
  • Melnik BC, John SM, Schmitz G. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from Laron syndrome. Nutr Metab (Lond) 2011; 8:41; http://dx.doi.org/10.1186/1743-7075-8-41; PMID: 21699736
  • Melnik BC. Milk signalling in the pathogenesis of type 2 diabetes. In: Lewis BS, Flugelman MY, Halon DA (eds) Coronary artery disease: 2011 update. Proceedings oft he 9th International Congress on Coronary Artery Disease. Medimond International Proceedings, Bologna 2011, pp17-22.
  • Lindeberg S. Food and Western disease. Health and nutrition from an evolutionary persepctive. Wiley-Blackwell, Oxford, 2010.
  • Yu R, Woo J, Chan R, Sham A, Ho S, Tso A, et al. Relationship between dietary intake and the development of type 2 diabetes in a Chinese population: the Hong Kong Dietary Survey. Public Health Nutr 2011; 1 - 9; PMID: 21466742
  • Gu Y, Nieves JW, Stern Y, Luchsinger JA, Scarmeas N. Food combination and Alzheimer disease risk: a protective diet. Arch Neurol 2010; 67:699 - 706; http://dx.doi.org/10.1001/archneurol.2010.84; PMID: 20385883
  • Klonoff DC. The beneficial effects of a Paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease. J Diabetes Sci Technol 2009; 3:1229 - 32; PMID: 20144375
  • Jönsson T, Granfeldt Y, Ahrén B, Branell UC, Pålsson G, Hansson A, et al. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol 2009; 8:35; http://dx.doi.org/10.1186/1475-2840-8-35; PMID: 19604407
  • Frassetto LA, Schloetter M, Mietus-Synder M, Morris RC Jr., Sebastian A. Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur J Clin Nutr 2009; 63:947 - 55; http://dx.doi.org/10.1038/ejcn.2009.4; PMID: 19209185
  • Seneff S, Wainwright G, Mascitelli L. Nutrition and Alzheimer’s disease: the detrimental role of a high carbohydrate diet. Eur J Intern Med 2011; 22:134 - 40; http://dx.doi.org/10.1016/j.ejim.2010.12.017; PMID: 21402242