938
Views
11
CrossRef citations to date
0
Altmetric
Review

Novel vitamin D compounds and skin cancer prevention

, , , , , , , & show all
Pages 20-33 | Received 21 Dec 2012, Accepted 09 Feb 2013, Published online: 01 Jan 2013

References

  • Nowson CA, McGrath JJ, Ebeling PR, Haikerwal A, Daly RM, Sanders KM, et al, Working Group of Australian and New Zealand Bone and Mineral Society, Endocrine Society of Australia and Osteoporosis Australia. Vitamin D and health in adults in Australia and New Zealand: a position statement. Med J Aust 2012; 196:686 - 7; http://dx.doi.org/10.5694/mja11.10301; PMID: 22708765
  • Holick MF. Vitamin D: evolutionary, physiological and health perspectives. Curr Drug Targets 2011; 12:4 - 18; http://dx.doi.org/10.2174/138945011793591635; PMID: 20795941
  • AIHW. Non-melanoma skin cancer: general practice consultations, hospitalisation and mortality. Australian Institute for Health and Welfare 2008: http://australia.gov.au/directories/australia/aihw.
  • Mason RS, Dixon KM, Sequeira VB, Gordon-Thomson C. Sunlight protection by vitamin D compounds. In: Feldman D, Pike JW, Adams JS, eds. Vitamin D. 3rd edition. San Diego: Elsevier, 2011: 1943-53.
  • Mason RS, Reichrath J. Sunlight vitamin d and skin cancer. Anticancer Agents Med Chem 2013; 13:83 - 97; http://dx.doi.org/10.2174/187152013804487272; PMID: 23094924
  • Malloy PJ, Pike JW, Feldman D. The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev 1999; 20:156 - 88; http://dx.doi.org/10.1210/er.20.2.156; PMID: 10204116
  • Norman AW, Song XD, Zanello L, Bula C, Okamura WH. Rapid and genomic biological responses are mediated by different shapes of the agonist steroid hormone, 1alpha,25(OH)2vitamin D3. Steroids 1999; 64:120 - 8; http://dx.doi.org/10.1016/S0039-128X(98)00091-9; PMID: 10323680
  • Norman AW, Henry HL, Bishop JE, Song XD, Bula C, Okamura WH. Different shapes of the steroid hormone 1alpha,25(OH)(2)-vitamin D(3) act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid responses. Steroids 2001; 66:147 - 58; http://dx.doi.org/10.1016/S0039-128X(00)00165-3; PMID: 11179722
  • Holick MF, MacLaughlin JA, Clark MB, Holick SA, Potts JT Jr., Anderson RR, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 1980; 210:203 - 5; http://dx.doi.org/10.1126/science.6251551; PMID: 6251551
  • Bikle DD, Nemanic MK, Whitney JO, Elias PW. Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3. Biochemistry 1986; 25:1545 - 8; http://dx.doi.org/10.1021/bi00355a013; PMID: 2423114
  • Lehmann B, Genehr T, Knuschke P, Pietzsch J, Meurer M. UVB-induced conversion of 7-dehydrocholesterol to 1alpha,25-dihydroxyvitamin D3 in an in vitro human skin equivalent model. J Invest Dermatol 2001; 117:1179 - 85; http://dx.doi.org/10.1046/j.0022-202x.2001.01538.x; PMID: 11710930
  • Sequeira VB, Rybchyn MS, Tongkao-On W, Gordon-Thomson C, Malloy PJ, Nemere I, et al. The role of the vitamin D receptor and ERp57 in photoprotection by 1α,25-dihydroxyvitamin D3. Mol Endocrinol 2012; 26:574 - 82; http://dx.doi.org/10.1210/me.2011-1161; PMID: 22322599
  • Nemere I, Dormanen MC, Hammond MW, Okamura WH, Norman AW. Identification of a specific binding protein for 1 alpha,25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. J Biol Chem 1994; 269:23750 - 6; PMID: 8089147
  • Zanello LP, Norman AW. Electrical responses to 1alpha,25(OH)2-Vitamin D3 and their physiological significance in osteoblasts. Steroids 2004; 69:561 - 5; http://dx.doi.org/10.1016/j.steroids.2004.05.003; PMID: 15288770
  • Mizwicki MT, Norman AW. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci Signal 2009; 2:re4; http://dx.doi.org/10.1126/scisignal.275re4; PMID: 19531804
  • Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 2008; 88:491S - 9S; PMID: 18689389
  • Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor?. Arch Biochem Biophys 2012; 523:123 - 33; http://dx.doi.org/10.1016/j.abb.2012.04.001; PMID: 22503810
  • Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 2011; 25:543 - 59; http://dx.doi.org/10.1016/j.beem.2011.05.010; PMID: 21872797
  • Zella LA, Meyer MB, Nerenz RD, Lee SM, Martowicz ML, Pike JW. Multifunctional enhancers regulate mouse and human vitamin D receptor gene transcription. Mol Endocrinol 2010; 24:128 - 47; http://dx.doi.org/10.1210/me.2009-0140; PMID: 19897601
  • Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 2004; 18:2660 - 71; http://dx.doi.org/10.1210/me.2004-0116; PMID: 15272054
  • Nemere I, Ray R, McManus W. Immunochemical studies on the putative plasmalemmal receptor for 1, 25(OH)(2)D(3). I. Chick intestine. Am J Physiol Endocrinol Metab 2000; 278:E1104 - 14; PMID: 10827014
  • Mizwicki MT, Keidel D, Bula CM, Bishop JE, Zanello LP, Wurtz JM, et al. Identification of an alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance in 1alpha,25(OH)2-vitamin D3 signaling. Proc Natl Acad Sci U S A 2004; 101:12876 - 81; http://dx.doi.org/10.1073/pnas.0403606101; PMID: 15326291
  • Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997; 16:391 - 6; http://dx.doi.org/10.1038/ng0897-391; PMID: 9241280
  • Teichert AE, Elalieh H, Elias PM, Welsh J, Bikle DD. Overexpression of hedgehog signaling is associated with epidermal tumor formation in vitamin D receptor-null mice. J Invest Dermatol 2011; 131:2289 - 97; http://dx.doi.org/10.1038/jid.2011.196; PMID: 21814234
  • Ellison TI, Smith MK, Gilliam AC, MacDonald PN. Inactivation of the vitamin D receptor enhances susceptibility of murine skin to UV-induced tumorigenesis. J Invest Dermatol 2008; 128:2508 - 17; http://dx.doi.org/10.1038/jid.2008.131; PMID: 18509362
  • Quigley DA, To MD, Pérez-Losada J, Pelorosso FG, Mao JH, Nagase H, et al. Genetic architecture of mouse skin inflammation and tumour susceptibility. Nature 2009; 458:505 - 8; http://dx.doi.org/10.1038/nature07683; PMID: 19136944
  • Twombly R. New carcinogen list includes estrogen, UV radiation. J Natl Cancer Inst 2003; 95:185 - 6; http://dx.doi.org/10.1093/jnci/95.3.185; PMID: 12569136
  • Weinstein IB. Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis 2000; 21:857 - 64; http://dx.doi.org/10.1093/carcin/21.5.857; PMID: 10783304
  • Hruza LL, Pentland AP. Mechanisms of UV-induced inflammation. J Invest Dermatol 1993; 100:35S - 41S; http://dx.doi.org/10.1038/jid.1993.21; PMID: 8423392
  • Douki T, Court M, Sauvaigo S, Odin F, Cadet J. Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J Biol Chem 2000; 275:11678 - 85; http://dx.doi.org/10.1074/jbc.275.16.11678; PMID: 10766787
  • Cooke MS, Podmore ID, Mistry N, Evans MD, Herbert KE, Griffiths HR, et al. Immunochemical detection of UV-induced DNA damage and repair. J Immunol Methods 2003; 280:125 - 33; http://dx.doi.org/10.1016/S0022-1759(03)00269-2; PMID: 12972193
  • Mouret S, Charveron M, Favier A, Cadet J, Douki T. Differential repair of UVB-induced cyclobutane pyrimidine dimers in cultured human skin cells and whole human skin. DNA Repair (Amst) 2008; 7:704 - 12; http://dx.doi.org/10.1016/j.dnarep.2008.01.005; PMID: 18313369
  • Ikehata H, Ono T. Significance of CpG methylation for solar UV-induced mutagenesis and carcinogenesis in skin. Photochem Photobiol 2007; 83:196 - 204; PMID: 16620158
  • Halliday GM. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 2005; 571:107 - 20; http://dx.doi.org/10.1016/j.mrfmmm.2004.09.013; PMID: 15748642
  • Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 2004; 195:298 - 308; http://dx.doi.org/10.1016/j.taap.2003.08.019; PMID: 15020192
  • Kunisada M, Sakumi K, Tominaga Y, Budiyanto A, Ueda M, Ichihashi M, et al. 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res 2005; 65:6006 - 10; http://dx.doi.org/10.1158/0008-5472.CAN-05-0724; PMID: 16024598
  • Huang XX, Scolyer RA, Abubakar A, Halliday GM. Human 8-oxoguanine-DNA glycosylase-1 is downregulated in human basal cell carcinoma. Mol Genet Metab 2012; 106:127 - 30; http://dx.doi.org/10.1016/j.ymgme.2012.02.017; PMID: 22436579
  • Niles JC, Wishnok JS, Tannenbaum SR. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 2006; 14:109 - 21; http://dx.doi.org/10.1016/j.niox.2005.11.001; PMID: 16352449
  • Sutherland BM, Harber LC, Kochevar IE. Pyrimidine dimer formation and repair in human skin. Cancer Res 1980; 40:3181 - 5; PMID: 6253056
  • Young AR, Chadwick CA, Harrison GI, Hawk JL, Nikaido O, Potten CS. The in situ repair kinetics of epidermal thymine dimers and 6-4 photoproducts in human skin types I and II. J Invest Dermatol 1996; 106:1307 - 13; http://dx.doi.org/10.1111/1523-1747.ep12349031; PMID: 8752675
  • Ichihashi M, Fujiwara Y. Clinical and photobiological characteristics of Japanese xeroderma pigmentosum variant. Br J Dermatol 1981; 105:1 - 12; http://dx.doi.org/10.1111/j.1365-2133.1981.tb00876.x; PMID: 7259973
  • Healy E, Reynolds NJ, Smith MD, Campbell C, Farr PM, Rees JL. Dissociation of erythema and p53 protein expression in human skin following UVB irradiation, and induction of p53 protein and mRNA following application of skin irritants. J Invest Dermatol 1994; 103:493 - 9; http://dx.doi.org/10.1111/1523-1747.ep12395637; PMID: 7930673
  • Hall PA, McKee PH, Menage HD, Dover R, Lane DP. High levels of p53 protein in UV-irradiated normal human skin. Oncogene 1993; 8:203 - 7; PMID: 8093810
  • Campbell C, Quinn AG, Angus B, Farr PM, Rees JL. Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer Res 1993; 53:2697 - 9; PMID: 8504406
  • Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984; 4:1689 - 94; PMID: 6092932
  • Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358:15 - 6; http://dx.doi.org/10.1038/358015a0; PMID: 1614522
  • Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372:773 - 6; http://dx.doi.org/10.1038/372773a0; PMID: 7997263
  • Thomas L. Discussion. In: Lawrence HS, ed. Cellular and humoral aspects of the hypersensitive states. New York: Hoeber-Harper, 1959:529-33.
  • Kripke ML, Cox PA, Alas LG, Yarosh DB. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci U S A 1992; 89:7516 - 20; http://dx.doi.org/10.1073/pnas.89.16.7516; PMID: 1502162
  • Daynes RA, Bernhard EJ, Gurish MF, Lynch DH. Experimental photoimmunology: immunologic ramifications of UV-induced carcinogenesis. J Invest Dermatol 1981; 77:77 - 85; http://dx.doi.org/10.1111/1523-1747.ep12479260; PMID: 6454731
  • Kinlen LJ, Sheil AG, Peto J, Doll R. Collaborative United Kingdom-Australasian study of cancer in patients treated with immunosuppressive drugs. Br Med J 1979; 2:1461 - 6; http://dx.doi.org/10.1136/bmj.2.6203.1461; PMID: 393355
  • Schwarz T. 25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells. Photochem Photobiol 2008; 84:10 - 8; PMID: 18173696
  • De Fabo EC, Noonan FP. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 1983; 158:84 - 98; http://dx.doi.org/10.1084/jem.158.1.84; PMID: 6223114
  • Halliday GM, Byrne SN, Damian DL. Ultraviolet A radiation: its role in immunosuppression and carcinogenesis. Semin Cutan Med Surg 2011; 30:214 - 21; http://dx.doi.org/10.1016/j.sder.2011.08.002; PMID: 22123419
  • Applegate LA, Ley RD, Alcalay J, Kripke ML. Identification of the molecular target for the suppression of contact hypersensitivity by ultraviolet radiation. J Exp Med 1989; 170:1117 - 31; http://dx.doi.org/10.1084/jem.170.4.1117; PMID: 2529340
  • Vile GF, Tyrrell RM. UVA radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic Biol Med 1995; 18:721 - 30; http://dx.doi.org/10.1016/0891-5849(94)00192-M; PMID: 7750796
  • Black H. The defensive role of antioxidants in skin carcinogenesis. In : Fuchs J, Parker L, eds. Oxidative Stress in Demartology. New York: Marcel Dekker, 1993: 243-69.
  • Floyd RA, West MS, Eneff KL, Hogsett WE, Tingey DT. Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA. Arch Biochem Biophys 1988; 262:266 - 72; http://dx.doi.org/10.1016/0003-9861(88)90188-9; PMID: 2833169
  • Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284:770 - 6; http://dx.doi.org/10.1126/science.284.5415.770; PMID: 10221902
  • Panelos J, Massi D. Emerging role of Notch signaling in epidermal differentiation and skin cancer. Cancer Biol Ther 2009; 8:1986 - 93; http://dx.doi.org/10.4161/cbt.8.21.9921; PMID: 19783903
  • Miele L, Golde T, Osborne B. Notch signaling in cancer. Curr Mol Med 2006; 6:905 - 18; http://dx.doi.org/10.2174/156652406779010830; PMID: 17168741
  • Dixon KM, Norman AW, Sequeira VB, Mohan R, Rybchyn MS, Reeve VE, et al. 1α,25(OH)₂-vitamin D and a nongenomic vitamin D analogue inhibit ultraviolet radiation-induced skin carcinogenesis. Cancer Prev Res (Phila) 2011; 4:1485 - 94; http://dx.doi.org/10.1158/1940-6207.CAPR-11-0165; PMID: 21733837
  • Langner A, Verjans H, Stapór V, Mol M, Fraczykowska M. Topical calcitriol in the treatment of chronic plaque psoriasis: a double-blind study. Br J Dermatol 1993; 128:566 - 71; http://dx.doi.org/10.1111/j.1365-2133.1993.tb00237.x; PMID: 8504051
  • Norman AW, Okamura WH, Hammond MW, Bishop JE, Dormanen MC, Bouillon R, et al. Comparison of 6-s-cis- and 6-s-trans-locked analogs of 1alpha,25-dihydroxyvitamin D3 indicates that the 6-s-cis conformation is preferred for rapid nongenomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogs are preferred for genomic biological responses. Mol Endocrinol 1997; 11:1518 - 31; http://dx.doi.org/10.1210/me.11.10.1518; PMID: 9280067
  • Janjetovic Z, Zmijewski MA, Tuckey RC, DeLeon DA, Nguyen MN, Pfeffer LM, et al. 20-Hydroxycholecalciferol, product of vitamin D3 hydroxylation by P450scc, decreases NF-kappaB activity by increasing IkappaB alpha levels in human keratinocytes. PLoS One 2009; 4:e5988; http://dx.doi.org/10.1371/journal.pone.0005988; PMID: 19543524
  • Slominski AT, Zmijewski MA, Semak I, Sweatman T, Janjetovic Z, Li W, et al. Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. PLoS One 2009; 4:e4309; http://dx.doi.org/10.1371/journal.pone.0004309; PMID: 19190754
  • Kajikawa M, Ishida H, Fujimoto S, Mukai E, Nishimura M, Fujita J, et al. An insulinotropic effect of vitamin D analog with increasing intracellular Ca2+ concentration in pancreatic beta-cells through nongenomic signal transduction. Endocrinology 1999; 140:4706 - 12; http://dx.doi.org/10.1210/en.140.10.4706; PMID: 10499529
  • Rebsamen MC, Sun JX, Norman AW, Liao JK. 1alpha,25-dihydroxyvitamin D3 induces vascular smooth muscle cell migration via activation of phosphatidylinositol 3-kinase. Circ Res 2002; 91:17 - 24; http://dx.doi.org/10.1161/01.RES.0000025269.60668.0F; PMID: 12114317
  • Posner GH, Jeon HB, Sarjeant A, Riccio ES, Doppalapudi RS, Kapetanovic IM, et al. Low-calcemic, efficacious, 1alpha,25-dihydroxyvitamin D3 analog QW-1624F2-2: calcemic dose-response determination, preclinical genotoxicity testing, and revision of A-ring stereochemistry. Steroids 2004; 69:757 - 62; http://dx.doi.org/10.1016/j.steroids.2004.09.004; PMID: 15579327
  • Reddy CD, Patti R, Guttapalli A, Maris JM, Yanamandra N, Rachamallu A, et al. Anticancer effects of the novel 1alpha, 25-dihydroxyvitamin D3 hybrid analog QW1624F2-2 in human neuroblastoma. J Cell Biochem 2006; 97:198 - 206; http://dx.doi.org/10.1002/jcb.20629; PMID: 16200638
  • Posner GH, Lee JK, Wang Q, Peleg S, Burke M, Brem H, et al. Noncalcemic, antiproliferative, transcriptionally active, 24-fluorinated hybrid analogues of the hormone 1alpha, 25-dihydroxyvitamin D3. Synthesis and preliminary biological evaluation. J Med Chem 1998; 41:3008 - 14; http://dx.doi.org/10.1021/jm980031t; PMID: 9685240
  • Kensler TW, Dolan PM, Gange SJ, Lee JK, Wang Q, Posner GH. Conceptually new deltanoids (vitamin D analogs) inhibit multistage skin tumorigenesis. Carcinogenesis 2000; 21:1341 - 5; http://dx.doi.org/10.1093/carcin/21.7.1341; PMID: 10874012
  • Krenn L, Kopp B. Bufadienolides from animal and plant sources. Phytochemistry 1998; 48:1 - 29; http://dx.doi.org/10.1016/S0031-9422(97)00426-3; PMID: 9621450
  • Schwinger RHG, Bundgaard H, Müller-Ehmsen J, Kjeldsen K. The Na, K-ATPase in the failing human heart. Cardiovasc Res 2003; 57:913 - 20; http://dx.doi.org/10.1016/S0008-6363(02)00767-8; PMID: 12650869
  • Nakano H, Matsunawa M, Yasui A, Adachi R, Kawana K, Shimomura I, et al. Enhancement of ligand-dependent vitamin D receptor transactivation by the cardiotonic steroid bufalin. Biochem Pharmacol 2005; 70:1479 - 86; http://dx.doi.org/10.1016/j.bcp.2005.08.012; PMID: 16183038
  • Zhang LS, Nakaya K, Yoshida T, Kuroiwa Y. Induction by bufalin of differentiation of human leukemia cells HL60, U937, and ML1 toward macrophage/monocyte-like cells and its potent synergistic effect on the differentiation of human leukemia cells in combination with other inducers. Cancer Res 1992; 52:4634 - 41; PMID: 1324788
  • Amano Y, Cho Y, Matsunawa M, Komiyama K, Makishima M. Increased nuclear expression and transactivation of vitamin D receptor by the cardiotonic steroid bufalin in human myeloid leukemia cells. J Steroid Biochem Mol Biol 2009; 114:144 - 51; http://dx.doi.org/10.1016/j.jsbmb.2009.01.022; PMID: 19429444
  • Numazawa S, Shinoki MA, Ito H, Yoshida T, Kuroiwa Y. Involvement of Na+,K(+)-ATPase inhibition in K562 cell differentiation induced by bufalin. J Cell Physiol 1994; 160:113 - 20; http://dx.doi.org/10.1002/jcp.1041600114; PMID: 8021291
  • Cooke MS, Podmore ID, Mistry N, Evans MD, Herbert KE, Griffiths HR, et al. Immunochemical detection of UV-induced DNA damage and repair. J Immunol Methods 2003; 280:125 - 33; http://dx.doi.org/10.1016/S0022-1759(03)00269-2; PMID: 12972193
  • Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci U S A 2006; 103:13765 - 70; http://dx.doi.org/10.1073/pnas.0604213103; PMID: 16954188
  • Mouret S, Philippe C, Gracia-Chantegrel J, Douki T.. Long UVA directly generate cyclobutane pyrimidine dimers in isolated and cellular DNA. Journal of Investigative Dermatology 2009; 129:S34
  • Tewari A, Sarkany RP, Young AR. UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo. J Invest Dermatol 2012; 132:394 - 400; http://dx.doi.org/10.1038/jid.2011.283; PMID: 21975824
  • Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 2001; 63:88 - 102; http://dx.doi.org/10.1016/S1011-1344(01)00206-8; PMID: 11684456
  • Pattison DI, Davies MJ. Actions of ultraviolet light on cellular structures. EXS 2006; (96):131 - 57; http://dx.doi.org/10.1007/3-7643-7378-4_6; PMID: 16383017
  • Wong G, Gupta R, Dixon KM, Deo SS, Choong SM, Halliday GM, et al. 1,25-Dihydroxyvitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. J Steroid Biochem Mol Biol 2004; 89-90:567 - 70; http://dx.doi.org/10.1016/j.jsbmb.2004.03.072; PMID: 15225840
  • De Haes P, Garmyn M, Verstuyf A, De Clercq P, Vandewalle M, Degreef H, et al. 1,25-Dihydroxyvitamin D3 and analogues protect primary human keratinocytes against UVB-induced DNA damage. J Photochem Photobiol B 2005; 78:141 - 8; http://dx.doi.org/10.1016/j.jphotobiol.2004.09.010; PMID: 15664501
  • Dixon KM, Deo SS, Wong G, Slater M, Norman AW, Bishop JE, et al. Skin cancer prevention: a possible role of 1,25dihydroxyvitamin D3 and its analogs. J Steroid Biochem Mol Biol 2005; 97:137 - 43; http://dx.doi.org/10.1016/j.jsbmb.2005.06.006; PMID: 16039116
  • Dixon KM, Deo SS, Norman AW, Bishop JE, Halliday GM, Reeve VE, et al. In vivo relevance for photoprotection by the vitamin D rapid response pathway. J Steroid Biochem Mol Biol 2007; 103:451 - 6; http://dx.doi.org/10.1016/j.jsbmb.2006.11.016; PMID: 17223553
  • Gupta R, Dixon KM, Deo SS, Holliday CJ, Slater M, Halliday GM, et al. Photoprotection by 1,25 dihydroxyvitamin D3 is associated with an increase in p53 and a decrease in nitric oxide products. J Invest Dermatol 2007; 127:707 - 15; http://dx.doi.org/10.1038/sj.jid.5700597; PMID: 17170736
  • Sequeira VB, Rybchyn MS, Tongkao-On W, Gordon-Thomson C, Malloy PJ, Nemere I, et al. The role of the vitamin D receptor and ERp57 in photoprotection by 1α,25-dihydroxyvitamin D3. Mol Endocrinol 2012; 26:574 - 82; http://dx.doi.org/10.1210/me.2011-1161; PMID: 22322599
  • Lee J, Youn JI. The photoprotective effect of 1,25-dihydroxyvitamin D3 on ultraviolet light B-induced damage in keratinocyte and its mechanism of action. J Dermatol Sci 1998; 18:11 - 8; http://dx.doi.org/10.1016/S0923-1811(98)00015-2; PMID: 9747657
  • Damian DL, Kim YJ, Dixon KM, Halliday GM, Javeri A, Mason RS. Topical calcitriol protects from UV-induced genetic damage but suppresses cutaneous immunity in humans. Exp Dermatol 2010; 19:e23 - 30; http://dx.doi.org/10.1111/j.1600-0625.2009.00955.x; PMID: 19758324
  • Song EJ, Gordon-Thomson C, Cole L, Stern H, Halliday GM, Damian DL, et al. 1α,25-Dihydroxyvitamin D(3) reduces several types of UV-induced DNA damage and contributes to photoprotection. J Steroid Biochem Mol Biol 2012; http://dx.doi.org/10.1016/j.jsbmb.2012.11.003; PMID: 23165145
  • Sequeira VB, Rybchyn MS, Gordon-Thomson C, Tongkao-On W, Mizwicki MT, Norman AW, et al. Opening of chloride channels by 1α,25-dihydroxyvitamin D(3) contributes to photoprotection against UVR-induced thymine dimers in keratinocytes. J Invest Dermatol 2012; 133:776 - 82; http://dx.doi.org/10.1038/jid.2012.343; PMID: 23014341
  • Dixon KM, Sequeira VB, Deo SS, Mohan R, Posner GH, Mason RS. Differential photoprotective effects of 1,25-dihydroxyvitamin D3 and a low calcaemic deltanoid. Photochem Photobiol Sci 2012; 11:1825 - 30; http://dx.doi.org/10.1039/c2pp25208b; PMID: 22907250
  • Bula CM, Bishop JE, Ishizuka S, Norman AW. 25-Dehydro-1alpha-hydroxyvitamin D3-26,23S-lactone antagonizes the nuclear vitamin D receptor by mediating a unique noncovalent conformational change. Mol Endocrinol 2000; 14:1788 - 96; http://dx.doi.org/10.1210/me.14.11.1788; PMID: 11075812
  • Ishizuka S, Miura D, Ozono K, Saito M, Eguchi H, Chokki M, et al. (23S)- and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone function as antagonists of vitamin D receptor-mediated genomic actions of 1alpha,25-dihydroxyvitamin D(3). Steroids 2001; 66:227 - 37; http://dx.doi.org/10.1016/S0039-128X(00)00146-X; PMID: 11179730
  • Gordon-Thomson C, Gupta R, Tongkao-on W, Ryan A, Halliday GM, Mason RS. 1α,25 dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem Photobiol Sci 2012; 11:1837 - 47; http://dx.doi.org/10.1039/c2pp25202c; PMID: 23069805
  • Kvam E, Tyrrell RM. Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 1997; 18:2379 - 84; http://dx.doi.org/10.1093/carcin/18.12.2379; PMID: 9450485
  • Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheeler M, Jones AM. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci U S A 2004; 101:4954 - 9; http://dx.doi.org/10.1073/pnas.0401141101; PMID: 15041750
  • Halliday GM. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 2005; 571:107 - 20; http://dx.doi.org/10.1016/j.mrfmmm.2004.09.013; PMID: 15748642
  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87:315 - 424; http://dx.doi.org/10.1152/physrev.00029.2006; PMID: 17237348
  • Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 1999; 424:37 - 49; http://dx.doi.org/10.1016/S0027-5107(99)00006-8; PMID: 10064848
  • Niles JC, Wishnok JS, Tannenbaum SR. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 2006; 14:109 - 21; http://dx.doi.org/10.1016/j.niox.2005.11.001; PMID: 16352449
  • Murata M, Thanan R, Ma N, Kawanishi S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012; 2012:623019; http://dx.doi.org/10.1155/2012/623019; PMID: 22363173
  • Epe B. DNA damage spectra induced by photosensitization. Photochem Photobiol Sci 2012; 11:98 - 106; http://dx.doi.org/10.1039/c1pp05190c; PMID: 21901212
  • Deliconstantinos G, Villiotou V, Stavrides JC. Increase of particulate nitric oxide synthase activity and peroxynitrite synthesis in UVB-irradiated keratinocyte membranes. Biochem J 1996; 320:997 - 1003; PMID: 9003391
  • Bruch-Gerharz D, Suschek C, Krischel V, Ruzicka T, Kolb-Bachofen V. Induction of nitric oxide synthase in endothelial cells: Different molecular mechanisms for UVA and UVB irradiation. J Invest Dermatol 1998; 110:649
  • Cals-Grierson MM, Ormerod AD. Nitric oxide function in the skin. Nitric Oxide 2004; 10:179 - 93; http://dx.doi.org/10.1016/j.niox.2004.04.005; PMID: 15275864
  • Paunel AN, Dejam A, Thelen S, Kirsch M, Horstjann M, Gharini P, et al. Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms. Free Radic Biol Med 2005; 38:606 - 15; http://dx.doi.org/10.1016/j.freeradbiomed.2004.11.018; PMID: 15683717
  • Mowbray M, McLintock S, Weerakoon R, Lomatschinsky N, Jones S, Rossi AG, et al. Enzyme-independent NO stores in human skin: quantification and influence of UV radiation. J Invest Dermatol 2009; 129:834 - 42; http://dx.doi.org/10.1038/jid.2008.296; PMID: 18818674
  • Hess DT, Matsumoto A, Nudelman R, Stamler JS. S-nitrosylation: spectrum and specificity. Nat Cell Biol 2001; 3:E46 - 9; http://dx.doi.org/10.1038/35055152; PMID: 11175760
  • Hiraku Y, Kawanishi S. Immunohistochemical analysis of 8-nitroguanine, a nitrative DNA lesion, in relation to inflammation-associated carcinogenesis. In: Kozlov S, ed. Inflammation and cancer: methods and Protocols. Humana Press, 2009:3-14.
  • Ohshima H, Sawa T, Akaike T. 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal 2006; 8:1033 - 45; http://dx.doi.org/10.1089/ars.2006.8.1033; PMID: 16771693
  • Mason R. Effect of vitamin D on melanocytes and its Role in melanogenesis. In: Kragballe K, ed. Vitamin D in cermatology. New York: Marcel Dekker, 2000:123-32.
  • Manggau M, Kim DS, Ruwisch L, Vogler R, Korting HC, Schäfer-Korting M, et al. 1Alpha,25-dihydroxyvitamin D3 protects human keratinocytes from apoptosis by the formation of sphingosine-1-phosphate. J Invest Dermatol 2001; 117:1241 - 9; http://dx.doi.org/10.1046/j.0022-202x.2001.01496.x; PMID: 11710939
  • Mason RS, Holliday CJ, Gupta R. 1,25 dihydroxyvitamin D and photoprotection in skin cells. In: Tsambos D, Merk H, eds. Modern trends in skin pharmacology. Athens, Greece: Parissianos Medical Publications S.A. Athens, 2002:59-66.
  • De Haes P, Garmyn M, Degreef H, Vantieghem K, Bouillon R, Segaert S. 1,25-Dihydroxyvitamin D3 inhibits ultraviolet B-induced apoptosis, Jun kinase activation, and interleukin-6 production in primary human keratinocytes. J Cell Biochem 2003; 89:663 - 73; http://dx.doi.org/10.1002/jcb.10540; PMID: 12858333
  • De Haes P, Garmyn M, Verstuyf A, De Clercq P, Vandewalle M, Vantieghem K, et al. Two 14-epi analogues of 1,25-dihydroxyvitamin D3 protect human keratinocytes against the effects of UVB. Arch Dermatol Res 2004; 295:527 - 34; http://dx.doi.org/10.1007/s00403-004-0451-x; PMID: 15042383
  • Youn JI, Park BS, Chung JH, Lee JH. Photoprotective effect of calcipotriol upon skin photoreaction to UVA and UVB. Photodermatol Photoimmunol Photomed 1997; 13:109 - 14; http://dx.doi.org/10.1111/j.1600-0781.1997.tb00126.x; PMID: 9372528
  • Hanada K, Sawamura D, Nakano H, Hashimoto I. Possible role of 1,25-dihydroxyvitamin D3-induced metallothionein in photoprotection against UVB injury in mouse skin and cultured rat keratinocytes. J Dermatol Sci 1995; 9:203 - 8; http://dx.doi.org/10.1016/0923-1811(94)00378-R; PMID: 8664218
  • Deliconstantinos G, Villiotou V, Stravrides JC. Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production. Br J Pharmacol 1995; 114:1257 - 65; http://dx.doi.org/10.1111/j.1476-5381.1995.tb13341.x; PMID: 7620717
  • Paunel-Gorgulu A, Dejam A, Thelen S, Kirsch M, Horstjann M, Gharini P, et al. UVA induces immediate and enzyme-independent nitric oxide formation in healthy human skin leading to no-specific signalling. Eur J Cell Biol 2005; 84:37 - 8
  • Mowbray M, McLintock S, Weerakoon R, Lomatschinsky N, Jones S, Rossi AG, et al. Enzyme-independent NO stores in human skin: quantification and influence of UV radiation. J Invest Dermatol 2009; 129:834 - 42; http://dx.doi.org/10.1038/jid.2008.296; PMID: 18818674
  • Bruch-Gerharz D, Ruzicka T, Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects. J Invest Dermatol 1998; 110:1 - 7; http://dx.doi.org/10.1046/j.1523-1747.1998.00084.x; PMID: 9424078
  • Cals-Grierson MM, Ormerod AD. Nitric oxide function in the skin. Nitric Oxide 2004; 10:179 - 93; http://dx.doi.org/10.1016/j.niox.2004.04.005; PMID: 15275864
  • Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 2000; 60:184 - 90; PMID: 10646872
  • Bau DT, Gurr JR, Jan KY. Nitric oxide is involved in arsenite inhibition of pyrimidine dimer excision. Carcinogenesis 2001; 22:709 - 16; http://dx.doi.org/10.1093/carcin/22.5.709; PMID: 11323388
  • Ferguson LR. Chronic inflammation and mutagenesis. Mutat Res 2010; 690:3 - 11; http://dx.doi.org/10.1016/j.mrfmmm.2010.03.007; PMID: 20223251
  • Yang YC, Chou HY, Shen TL, Chang WJ, Tai PH, Li TK. Topoisomerase II-mediated DNA cleavage and mutagenesis activated by nitric oxide underlie the inflammation-associated tumorigenesis. Antioxid Redox Signal 2013; 18:1129 - 40; http://dx.doi.org/10.1089/ars.2012.4620; PMID: 22998676
  • Tang CH, Wei W, Liu LM. Regulation of DNA repair by S-nitrosylation. Biochim Biophys Acta 2012; 1820:730 - 5; http://dx.doi.org/10.1016/j.bbagen.2011.04.014; PMID: 21571039
  • You YH, Pfeifer GP. Similarities in sunlight-induced mutational spectra of CpG-methylated transgenes and the p53 gene in skin cancer point to an important role of 5-methylcytosine residues in solar UV mutagenesis. J Mol Biol 2001; 305:389 - 99; http://dx.doi.org/10.1006/jmbi.2000.4322; PMID: 11152598
  • Chen PZ, Hu PT, Xie D, Qin Y, Wang FD, Wang H. Meta-analysis of vitamin D, calcium and the prevention of breast cancer. Breast Cancer Res Treat 2010; 121:469 - 77; http://dx.doi.org/10.1007/s10549-009-0593-9; PMID: 19851861
  • Pfeifer GP, Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 2012; 11:90 - 7; http://dx.doi.org/10.1039/c1pp05144j; PMID: 21804977
  • Tewari A, Grage MML, Harrison GI, Sarkany R, Young AR. UVA1 is skin deep: molecular and clinical implications. Photochem Photobiol Sci 2013; 12:95 - 103; http://dx.doi.org/10.1039/c2pp25323b; PMID: 23192740
  • Yogianti F, Kunisada M, Ono R, Sakumi K, Nakabeppu Y, Nishigori C. Skin tumours induced by narrowband UVB have higher frequency of p53 mutations than tumours induced by broadband UVB independent of Ogg1 genotype. Mutagenesis 2012; 27:637 - 43; http://dx.doi.org/10.1093/mutage/ges029; PMID: 22844076
  • Matsumura Y, Ananthaswamy HN. Molecular mechanisms of photocarcinogenesis. Front Biosci 2002; 7:d765 - 83; http://dx.doi.org/10.2741/matsumur; PMID: 11897559
  • Nataraj AJ, Trent JC 2nd, Ananthaswamy HN. p53 gene mutations and photocarcinogenesis. Photochem Photobiol 1995; 62:218 - 30; http://dx.doi.org/10.1111/j.1751-1097.1995.tb05262.x; PMID: 7480131
  • Besaratinia A, Kim SI, Pfeifer GP. Rapid repair of UVA-induced oxidized purines and persistence of UVB-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells. FASEB J 2008; 22:2379 - 92; http://dx.doi.org/10.1096/fj.07-105437; PMID: 18326785
  • Weihrauch M, Bader M, Lehnert G, Wittekind C, Tannapfel A, Wrbitzky R. Carcinogen-specific mutation pattern in the p53 tumour suppressor gene in UV radiation-induced basal cell carcinoma. Int Arch Occup Environ Health 2002; 75:272 - 6; http://dx.doi.org/10.1007/s00420-001-0307-z; PMID: 11981662
  • Kripke ML, Fisher MS. Immunologic parameters of ultraviolet carcinogenesis. J Natl Cancer Inst 1976; 57:211 - 5; PMID: 1003502
  • Nghiem DX, Kazimi N, Mitchell DL, Vink AA, Ananthaswamy HN, Kripke ML, et al. Mechanisms underlying the suppression of established immune responses by ultraviolet radiation. J Invest Dermatol 2002; 119:600 - 8; http://dx.doi.org/10.1046/j.1523-1747.2002.01845.x; PMID: 12230501
  • Matheu V, Bäck O, Mondoc E, Issazadeh-Navikas S, et al. Dual effects of vitamin D-induced alteration of TH1/TH2 cytokine expression: enhancing IgE production and decreasing airway eosinophilia in murine allergic airway disease. [see comment] J Allergy Clin Immunol 2003; 112:585 - 92; http://dx.doi.org/10.1016/S0091-6749(03)01855-4; PMID: 13679819
  • Biggs L, Yu C, Fedoric B, Lopez AF, Galli SJ, Grimbaldeston MA. Evidence that vitamin D(3) promotes mast cell-dependent reduction of chronic UVB-induced skin pathology in mice. J Exp Med 2010; 207:455 - 63; http://dx.doi.org/10.1084/jem.20091725; PMID: 20194632
  • Yang S, Smith C, DeLuca HF. 1 alpha, 25-Dihydroxyvitamin D3 and 19-nor-1 alpha, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta 1993; 1158:279 - 86; http://dx.doi.org/10.1016/0304-4165(93)90026-5; PMID: 8251528
  • Yang S, Smith C, Prahl JM, Luo X, DeLuca HF. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys 1993; 303:98 - 106; http://dx.doi.org/10.1006/abbi.1993.1260; PMID: 8489269
  • Hanneman KK, Scull HM, Cooper KD, Baron ED. Effect of topical vitamin D analogue on in vivo contact sensitization. Arch Dermatol 2006; 142:1332 - 4; http://dx.doi.org/10.1001/archderm.142.10.1332; PMID: 17043189
  • Gordon JR, Brieva JC. Images in clinical medicine. Unilateral dermatoheliosis. N Engl J Med 2012; 366:e25; http://dx.doi.org/10.1056/NEJMicm1104059; PMID: 22512500
  • Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol 2002; 138:1462 - 70; http://dx.doi.org/10.1001/archderm.138.11.1462; PMID: 12437452
  • Bashir MM, Sharma MR, Werth VP. TNF-alpha production in the skin. Arch Dermatol Res 2009; 301:87 - 91; http://dx.doi.org/10.1007/s00403-008-0893-7; PMID: 18825399
  • Kondo S, Sauder DN, Kono T, Galley KA, McKenzie RC. Differential modulation of interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) in human epidermal keratinocytes by UVB. Exp Dermatol 1994; 3:29 - 39; http://dx.doi.org/10.1111/j.1600-0625.1994.tb00263.x; PMID: 8061933
  • Setlow RB, Carrier WL. Pyrimidine dimers in ultraviolet-irradiated DNA’s. J Mol Biol 1966; 17:237 - 54; http://dx.doi.org/10.1016/S0022-2836(66)80105-5; PMID: 4289765
  • Mitchell DL. The relative cytotoxicity of (6-4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol 1988; 48:51 - 7; http://dx.doi.org/10.1111/j.1751-1097.1988.tb02785.x; PMID: 3217442
  • Mitchell DL, Nairn RS. The biology of the (6-4) photoproduct. Photochem Photobiol 1989; 49:805 - 19; http://dx.doi.org/10.1111/j.1751-1097.1989.tb05578.x; PMID: 2672059
  • Rhodes LE, Belgi G, Parslew R, McLoughlin L, Clough GF, Friedmann PS. Ultraviolet-B-induced erythema is mediated by nitric oxide and prostaglandin E2 in combination. J Invest Dermatol 2001; 117:880 - 5; http://dx.doi.org/10.1046/j.0022-202x.2001.01514.x; PMID: 11676827
  • Reeve VE, Tyrrell RM. Heme oxygenase induction mediates the photoimmunoprotective activity of UVA radiation in the mouse. Proc Natl Acad Sci U S A 1999; 96:9317 - 21; http://dx.doi.org/10.1073/pnas.96.16.9317; PMID: 10430940
  • Wright D, Zampagni M, Evangelisti E, Conti S, D’Adamio G, Goti A, et al. Protective properties of novel S-acyl-glutathione thioesters against ultraviolet-induced oxidative stress. Photochem Photobiol 2012; In press http://dx.doi.org/10.1111/j.1751-1097.2012.01231.x; PMID: 22934650
  • Wilgus TA, Koki AT, Zweifel BS, Kusewitt DF, Rubal PA, Oberyszyn TM. Inhibition of cutaneous ultraviolet light B-mediated inflammation and tumor formation with topical celecoxib treatment. Mol Carcinog 2003; 38:49 - 58; http://dx.doi.org/10.1002/mc.10141; PMID: 14502644
  • Fisher GJ. The pathophysiology of photoaging of the skin. Cutis 2005; 75:Suppl 5 - 8, discussion 8-9; PMID: 15773537
  • Offersen BV, Knap MM, Horsman MR, Verheijen J, Hanemaaijer R, Overgaard J. Matrix metalloproteinase-9 measured in urine from bladder cancer patients is an independent prognostic marker of poor survival. Acta Oncol 2010; 49:1283 - 7; http://dx.doi.org/10.3109/0284186X.2010.509109; PMID: 20843171
  • Parrish JA, Jaenicke KF, Anderson RR. Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 1982; 36:187 - 91; http://dx.doi.org/10.1111/j.1751-1097.1982.tb04362.x; PMID: 7122713
  • Ichihashi M, Ando H, Yoshida M, Niki Y, Matsui M. Photoaging of the skin. Anti-Aging Med 2009; 6:46 - 59; http://dx.doi.org/10.3793/jaam.6.46
  • Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 2004; 79:362 - 71; PMID: 14985208
  • Chen L, Wang S.. From the bottle to the skin: challenges in evaluating antioxidants. Photodermatol. Photoimmunol Photomed 2012; 28:228 - 34; http://dx.doi.org/10.1111/j.1600-0781.2012.00674.x
  • Hashimoto Y, Ohkuma N, Iizuka H. Reduced superoxide dismutase activity in UVB-induced hyperproliferative pig epidermis. Arch Dermatol Res 1991; 283:317 - 20; http://dx.doi.org/10.1007/BF00376620; PMID: 1929555
  • Rhie G, Shin MH, Seo JY, Choi WW, Cho KH, Kim KH, et al. Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol 2001; 117:1212 - 7; http://dx.doi.org/10.1046/j.0022-202x.2001.01469.x; PMID: 11710935
  • Eberlein-König B, Placzek M, Przybilla B. Protective effect against sunburn of combined systemic ascorbic acid (vitamin C) and d-alpha-tocopherol (vitamin E). J Am Acad Dermatol 1998; 38:45 - 8; http://dx.doi.org/10.1016/S0190-9622(98)70537-7; PMID: 9448204
  • Murad H, Tabibian MP. The effect of an oral supplement containing glucosamine, amino acids, minerals, and antioxidants on cutaneous aging: a preliminary study. J Dermatolog Treat 2001; 12:47 - 51; http://dx.doi.org/10.1080/095466301750163590; PMID: 12171689
  • Nusgens BV, Humbert P, Rougier A, Colige AC, Haftek M, Lambert CA, et al. Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol 2001; 116:853 - 9; http://dx.doi.org/10.1046/j.0022-202x.2001.01362.x; PMID: 11407971
  • Humbert PG, Haftek M, Creidi P, Lapière C, Nusgens B, Richard A, et al. Topical ascorbic acid on photoaged skin. Clinical, topographical and ultrastructural evaluation: double-blind study vs. placebo. Exp Dermatol 2003; 12:237 - 44; http://dx.doi.org/10.1034/j.1600-0625.2003.00008.x; PMID: 12823436
  • Yoshida E, Watanabe T, Takata J, Yamazaki A, Karube Y, Kobayashi S. Topical application of a novel, hydrophilic gamma-tocopherol derivative reduces photo-inflammation in mice skin. J Invest Dermatol 2006; 126:1633 - 40; http://dx.doi.org/10.1038/sj.jid.5700236; PMID: 16543897
  • Hsu S. Green tea and the skin. J Am Acad Dermatol 2005; 52:1049 - 59; http://dx.doi.org/10.1016/j.jaad.2004.12.044; PMID: 15928624
  • Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc 1998; 3:61 - 8; PMID: 9732061
  • Fisher GJ, Datta S, Wang Z, Li XY, Quan T, Chung JH, et al. c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J Clin Invest 2000; 106:663 - 70; http://dx.doi.org/10.1172/JCI9362; PMID: 10974019
  • Mason RS, Sequeira VB, Dixon KM, Gordon-Thomson C, Pobre K, Dilley A, et al. Photoprotection by 1alpha,25-dihydroxyvitamin D and analogs: further studies on mechanisms and implications for UV-damage. J Steroid Biochem Mol Biol 2010; 121:164 - 8; http://dx.doi.org/10.1016/j.jsbmb.2010.03.082; PMID: 20399269
  • Cohen-Lahav M, Shany S, Tobvin D, Chaimovitz C, Douvdevani A. Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol Dial Transplant 2006; 21:889 - 97; http://dx.doi.org/10.1093/ndt/gfi254; PMID: 16455676
  • Mason RS, Sequeira VB, Dixon KM, Gordon-Thomson C, Pobre K, Dilley A, et al. Photoprotection by 1α,25-dihydroxyvitamin D and analogs: further studies on mechanisms and implications for UV-damage. J Steroid Biochem Mol Biol 2010; 121:164 - 8; http://dx.doi.org/10.1016/j.jsbmb.2010.03.082; PMID: 20399269
  • Tetlow LC, Woolley DE. Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthritis Cartilage 2001; 9:423 - 31; http://dx.doi.org/10.1053/joca.2000.0408; PMID: 11467890
  • Bahar-Shany K, Ravid A, Koren R. Upregulation of MMP-9 production by TNFalpha in keratinocytes and its attenuation by vitamin D. J Cell Physiol 2010; 222:729 - 37; PMID: 20020446
  • Dixon KM, Sequeira VB, Camp AJ, Mason RS. Vitamin D and skin cancer. In: Preedy VR, ed. Handbook of Diet, Nutrition and the Skin. Wageningen: Wageningen Academic Publishers, 2012: 395-411.
  • Bikle DD. The vitamin D receptor: a tumor suppressor in skin. Discov Med 2011; 11:7 - 17; PMID: 21276406
  • Roza L, van der Wulp KJ, MacFarlane SJ, Lohman PH, Baan RA. Detection of cyclobutane thymine dimers in DNA of human cells with monoclonal antibodies raised against a thymine dimer-containing tetranucleotide. Photochem Photobiol 1988; 48:627 - 33; http://dx.doi.org/10.1111/j.1751-1097.1988.tb02873.x; PMID: 3241835