1,471
Views
37
CrossRef citations to date
0
Altmetric
Research Paper

Rapid estrogenic signaling activities of the modified (chlorinated, sulfonated, and glucuronidated) endocrine disruptor bisphenol A

, &
Article: e25411 | Received 27 Mar 2013, Accepted 13 Jun 2013, Published online: 24 Jun 2013

References

  • Zalko D, Jacques C, Duplan H, Bruel S, Perdu E. Viable skin efficiently absorbs and metabolizes bisphenol A. Chemosphere 2011; 82:424 - 30; http://dx.doi.org/10.1016/j.chemosphere.2010.09.058; PMID: 21030062
  • Willhite CC, Ball GL, McLellan CJ. Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. J Toxicol Environ Health B Crit Rev 2008; 11:69 - 146; http://dx.doi.org/10.1080/10937400701724303; PMID: 18188738
  • Liao C, Liu F, Alomirah H, Loi VD, Mohd MA, Moon HB, et al. Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures. Environ Sci Technol 2012; 46:6860 - 6; http://dx.doi.org/10.1021/es301334j; PMID: 22620267
  • Liao C, Liu F, Kannan K. Bisphenol s, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol a residues. Environ Sci Technol 2012; 46:6515 - 22; http://dx.doi.org/10.1021/es300876n; PMID: 22591511
  • Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT. van der BB, and Gustafsson JA. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocr 1998; 139:4252 - 63; http://dx.doi.org/10.1210/en.139.10.4252
  • Wozniak AL, Bulayeva NN, Watson CS. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect 2005; 113:431 - 9; http://dx.doi.org/10.1289/ehp.7505; PMID: 15811834
  • Jeng YJ, Watson CS. Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. Environ Health Perspect 2011; 119:104 - 12; http://dx.doi.org/10.1289/ehp.1002512; PMID: 20870566
  • Kochukov MY, Jeng Y-J, Watson CS. Alkylphenol xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes. Environ Health Perspect 2009; 117:723 - 30; PMID: 19479013
  • Kubwabo C, Kosarac I, Stewart B, Gauthier BR, Lalonde K, Lalonde PJ. Migration of bisphenol A from plastic baby bottles, baby bottle liners and reusable polycarbonate drinking bottles. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2009; 26:928 - 37; http://dx.doi.org/10.1080/02652030802706725; PMID: 19680968
  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect 2008; 116:39 - 44; http://dx.doi.org/10.1289/ehp.10753; PMID: 18197297
  • Fernández M, Bourguignon N, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect 2010; 118:1217 - 22; http://dx.doi.org/10.1289/ehp.0901257; PMID: 20413367
  • Newbold RR, Jefferson WN, Padilla-Banks E. Prenatal exposure to bisphenol a at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect 2009; 117:879 - 85; PMID: 19590677
  • Berger RG, Foster WG, deCatanzaro D. Bisphenol-A exposure during the period of blastocyst implantation alters uterine morphology and perturbs measures of estrogen and progesterone receptor expression in mice. Reprod Toxicol 2010; 30:393 - 400; http://dx.doi.org/10.1016/j.reprotox.2010.06.006; PMID: 20599497
  • Fernández M, Bianchi M, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a alters reproductive parameters and gonadotropin releasing hormone signaling in female rats. Environ Health Perspect 2009; 117:757 - 62; PMID: 19479018
  • Abrahám IM, Han SK, Todman MG, Korach KS, Herbison AE. Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. J Neurosci 2003; 23:5771 - 7; PMID: 12843281
  • Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB. The pancreatic beta-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 2009; 304:63 - 8; http://dx.doi.org/10.1016/j.mce.2009.02.016; PMID: 19433249
  • Midoro-Horiuti T, Tiwari R, Watson CS, Goldblum RM. Maternal bisphenol a exposure promotes the development of experimental asthma in mouse pups. Environ Health Perspect 2010; 118:273 - 7; http://dx.doi.org/10.1289/ehp.0901259; PMID: 20123615
  • Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 2004; 51:165 - 9; http://dx.doi.org/10.1507/endocrj.51.165; PMID: 15118266
  • Indirect Food FDA. Additives: Polymers.Docket No. FDA-2012-F-0031. Available: http://www.gpo.gov/fdsys/pkg/FR-2012-07-17/pdf/2012-17366.pdf. Last accessed: 10-8-2012. 2012
  • Yamamoto T, Yasuhara A. Quantities of bisphenol a leached from plastic waste samples. Chemosphere 1999; 38:2569 - 76; http://dx.doi.org/10.1016/S0045-6535(98)00464-0; PMID: 10204238
  • Dorn PB. Chi-Su Chou, and Joseph J.Gentempo. Degradation of Bisphenol A in Natural Waters. Chemosphere 1987; 16:1501 - 7; http://dx.doi.org/10.1016/0045-6535(87)90090-7
  • Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998; 36:2149 - 73; http://dx.doi.org/10.1016/S0045-6535(97)10133-3; PMID: 9566294
  • Gibson D. Microbial Biodegradation of Organic Compounds. 1984; 13:535
  • Kang JH, Kondo F. Bisphenol a degradation by bacteria isolated from river water. Arch Environ Contam Toxicol 2002; 43:265 - 9; http://dx.doi.org/10.1007/s00244-002-1209-0; PMID: 12202920
  • Kuruto-Niwa R, Nozawa R, Miyakoshi T, Shiozawa T, Terao Y. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system. Environ Toxicol Pharmacol 2005; 19:121 - 30; http://dx.doi.org/10.1016/j.etap.2004.05.009; PMID: 21783468
  • Yamamoto T, Yasuhara A. Chlorination of bisphenol A in aqueous media: formation of chlorinated bisphenol A congeners and degradation to chlorinated phenolic compounds. Chemosphere 2002; 46:1215 - 23; http://dx.doi.org/10.1016/S0045-6535(01)00198-9; PMID: 11951989
  • Gallard H, Leclercq A, Croué JP. Chlorination of bisphenol A: kinetics and by-products formation. Chemosphere 2004; 56:465 - 73; http://dx.doi.org/10.1016/j.chemosphere.2004.03.001; PMID: 15212912
  • Gallard H, Leclercq A, Croué JP. Chlorination of bisphenol A: kinetics and by-products formation. Chemosphere 2004; 56:465 - 73; http://dx.doi.org/10.1016/j.chemosphere.2004.03.001; PMID: 15212912
  • Reed MJ, Purohit A, Woo LW, Newman SP, Potter BV. Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr Rev 2005; 26:171 - 202; http://dx.doi.org/10.1210/er.2004-0003; PMID: 15561802
  • Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 1998; 19:1 - 27; http://dx.doi.org/10.1093/carcin/19.1.1; PMID: 9472688
  • Matthews JB, Twomey K, Zacharewski TR. In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Chem Res Toxicol 2001; 14:149 - 57; http://dx.doi.org/10.1021/tx0001833; PMID: 11258963
  • Shimizu M, Ohta K, Matsumoto Y, Fukuoka M, Ohno Y, Ozawa S. Sulfation of bisphenol A abolished its estrogenicity based on proliferation and gene expression in human breast cancer MCF-7 cells. Toxicol In Vitro 2002; 16:549 - 56; http://dx.doi.org/10.1016/S0887-2333(02)00055-3; PMID: 12206822
  • Snyder RW, Maness SC, Gaido KW, Welsch F, Sumner SC, Fennell TR. Metabolism and disposition of bisphenol A in female rats. Toxicol Appl Pharmacol 2000; 168:225 - 34; http://dx.doi.org/10.1006/taap.2000.9051; PMID: 11042095
  • Campbell CH, Watson CS. A comparison of membrane vs. intracellular estrogen receptor-alpha in GH(3)/B6 pituitary tumor cells using a quantitative plate immunoassay. Steroids 2001; 66:727 - 36; http://dx.doi.org/10.1016/S0039-128X(01)00106-4; PMID: 11522334
  • Norfleet AM, Clarke CH, Gametchu B, Watson CS. Antibodies to the estrogen receptor-α modulate rapid prolactin release from rat pituitary tumor cells through plasma membrane estrogen receptors. FASEB J 2000; 14:157 - 65; PMID: 10627290
  • Norfleet AM, Thomas ML, Gametchu B, Watson CS. Estrogen receptor-α detected on the plasma membrane of aldehyde-fixed GH3/B6/F10 rat pituitary tumor cells by enzyme-linked immunocytochemistry. Endocrinology 1999; 140:3805 - 14; http://dx.doi.org/10.1210/en.140.8.3805; PMID: 10433242
  • Powell CE, Soto AM, Sonnenschein C. Identification and characterization of membrane estrogen receptor from MCF7 estrogen-target cells. J Steroid Biochem Mol Biol 2001; 77:97 - 108; http://dx.doi.org/10.1016/S0960-0760(01)00040-1; PMID: 11377974
  • Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, Levin ER. Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 2003; 23:1633 - 46; http://dx.doi.org/10.1128/MCB.23.5.1633-1646.2003; PMID: 12588983
  • Bulayeva NN, Gametchu B, Watson CS. Quantitative measurement of estrogen-induced ERK 1 and 2 activation via multiple membrane-initiated signaling pathways. Steroids 2004; 69:181 - 92; http://dx.doi.org/10.1016/j.steroids.2003.12.003; PMID: 15072920
  • Campbell CH, Bulayeva N, Brown DB, Gametchu B, Watson CS. Regulation of the membrane estrogen receptor-alpha: role of cell density, serum, cell passage number, and estradiol. FASEB J 2002; 16:1917 - 27; http://dx.doi.org/10.1096/fj.02-0182com; PMID: 12468456
  • Jeng YJ, Kochukov MY, Watson CS. Membrane estrogen receptor-alpha-mediated nongenomic actions of phytoestrogens in GH3/B6/F10 pituitary tumor cells. J Mol Signal 2009; 4:2; http://dx.doi.org/10.1186/1750-2187-4-2; PMID: 19400946
  • Jeng YJ, Kochukov M, Nauduri D, Kaphalia BS, Watson CS. Subchronic exposure to phytoestrogens alone and in combination with diethylstilbestrol - pituitary tumor induction in Fischer 344 rats. Nutr Metab (Lond) 2010; 7:40; http://dx.doi.org/10.1186/1743-7075-7-40; PMID: 20459739
  • Jeng YJ, Watson CS. Proliferative and anti-proliferative effects of dietary levels of phytoestrogens in rat pituitary GH3/B6/F10 cells - the involvement of rapidly activated kinases and caspases. BMC Cancer 2009; 9:334; http://dx.doi.org/10.1186/1471-2407-9-334; PMID: 19765307
  • Jeng YJ, Kochukov M, Watson CS. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells. Environ Health 2010; 9:61; http://dx.doi.org/10.1186/1476-069X-9-61; PMID: 20950447
  • Bulayeva NN, Watson CS. Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ Health Perspect 2004; 112:1481 - 7; http://dx.doi.org/10.1289/ehp.7175; PMID: 15531431
  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr., Lee DH, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378 - 455; http://dx.doi.org/10.1210/er.2011-1050; PMID: 22419778
  • Conolly RB, Lutz WK. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci 2004; 77:151 - 7; http://dx.doi.org/10.1093/toxsci/kfh007; PMID: 14600281
  • Watson CS, Jeng YJ, Kochukov MY. Nongenomic signaling pathways of estrogen toxicity. Toxicol Sci 2010; 115:1 - 11; http://dx.doi.org/10.1093/toxsci/kfp288; PMID: 19955490
  • Weltje L, vom Saal FS, Oehlmann J. Reproductive stimulation by low doses of xenoestrogens contrasts with the view of hormesis as an adaptive response. Hum Exp Toxicol 2005; 24:431 - 7; http://dx.doi.org/10.1191/0960327105ht551oa; PMID: 16235731
  • Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 1995; 80:225 - 36; http://dx.doi.org/10.1016/0092-8674(95)90405-0; PMID: 7834742
  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007; 1773:1263 - 84; http://dx.doi.org/10.1016/j.bbamcr.2006.10.001; PMID: 17126425
  • Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 2003; 5:647 - 54; http://dx.doi.org/10.1038/ncb1005; PMID: 12792650
  • Allan LA, Clarke PR. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 2007; 26:301 - 10; http://dx.doi.org/10.1016/j.molcel.2007.03.019; PMID: 17466630
  • Allan LA, Clarke PR. Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. FEBS J 2009; 276:6063 - 73; http://dx.doi.org/10.1111/j.1742-4658.2009.07330.x; PMID: 19788417
  • Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2008; 22:954 - 65; http://dx.doi.org/10.1096/fj.06-7859rev; PMID: 18039929
  • Nordström E, Fisone G, Kristensson K. Opposing effects of ERK and p38-JNK MAP kinase pathways on formation of prions in GT1-1 cells. FASEB J 2009; 23:613 - 22; http://dx.doi.org/10.1096/fj.08-115360; PMID: 18824519
  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270:1326 - 31; http://dx.doi.org/10.1126/science.270.5240.1326; PMID: 7481820
  • Meloche S, Pouysségur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26:3227 - 39; http://dx.doi.org/10.1038/sj.onc.1210414; PMID: 17496918
  • Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 1998; 10:205 - 19; http://dx.doi.org/10.1016/S0955-0674(98)80143-9; PMID: 9561845
  • Viñas R, Watson CS. Chemical Mixtures of Bisphenol-A and Bisphenol-S disrupt E2-induced non-genomic signaling in mERá-enriched (GH3/B6/F10) rat pituitary cell line. Abstract: Endocrine Society Annual Meeting June 2012. Endocrine Society Annual Meeting June (2012) 2012
  • Lu H, Crawford RB, Kaplan BL, Kaminski NE. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells. Toxicol Appl Pharmacol 2011; 255:251 - 60; http://dx.doi.org/10.1016/j.taap.2011.06.026; PMID: 21807014
  • North CM, Crawford RB, Lu H, Kaminski NE. 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of toll-like receptor stimulated B-lymphocyte activation and initiation of plasmacytic differentiation. Toxicol Sci 2010; 116:99 - 112; http://dx.doi.org/10.1093/toxsci/kfq095; PMID: 20348231
  • Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27:6245 - 51; http://dx.doi.org/10.1038/onc.2008.301; PMID: 18931691
  • Sánchez-Perez I, Murguía JR, Perona R. Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 1998; 16:533 - 40; http://dx.doi.org/10.1038/sj.onc.1201578; PMID: 9484843
  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389 - 8; PMID: 9311781
  • Tabira Y, Nakai M, Asai D, Yakabe Y, Tahara Y, Shinmyozu T, et al. Structural requirements of para-alkylphenols to bind to estrogen receptor. Eur J Biochem 1999; 262:240 - 5; http://dx.doi.org/10.1046/j.1432-1327.1999.00422.x; PMID: 10231387
  • Nakai M, Tabira Y, Asai D, Yakabe Y, Shimyozu T, Noguchi M, et al. Binding characteristics of dialkyl phthalates for the estrogen receptor. Biochem Biophys Res Commun 1999; 254:311 - 4; http://dx.doi.org/10.1006/bbrc.1998.9928; PMID: 9918834
  • Kuruto-Niwa R, Terao Y, Nozawa R. Identification of estrogenic activity of chlorinated bisphenol A using a GFP expression system. Environ Toxicol Pharmacol 2002; 12:27 - 35; http://dx.doi.org/10.1016/S1382-6689(02)00011-X; PMID: 21782620
  • Kuruto-Niwa R, Nozawa R, Miyakoshi T, Shiozawa T, Terao Y. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system. Environ Toxicol Pharmacol 2005; 19:121 - 30; http://dx.doi.org/10.1016/j.etap.2004.05.009; PMID: 21783468
  • Samuelsen M, Olsen C, Holme JA, Meussen-Elholm E, Bergmann A, Hongslo JK. Estrogen-like properties of brominated analogs of bisphenol A in the MCF-7 human breast cancer cell line. Cell Biol Toxicol 2001; 17:139 - 51; http://dx.doi.org/10.1023/A:1011974012602; PMID: 11693576
  • Canesi L, Lorusso LC, Ciacci C, Betti M, Zampini M, Gallo G. Environmental estrogens can affect the function of mussel hemocytes through rapid modulation of kinase pathways. Gen Comp Endocrinol 2004; 138:58 - 69; http://dx.doi.org/10.1016/j.ygcen.2004.05.004; PMID: 15242752
  • Liu R, Xing L, Kong D, Jiang J, Shang L, Hao W. Bisphenol A inhibits proliferation and induces apoptosis in micromass cultures of rat embryonic midbrain cells through the JNK, CREB and p53 signaling pathways. Food Chem Toxicol 2013; 52:76 - 82; http://dx.doi.org/10.1016/j.fct.2012.10.033; PMID: 23146694
  • Song KH, Lee K, Choi HS. Endocrine disrupter bisphenol a induces orphan nuclear receptor Nur77 gene expression and steroidogenesis in mouse testicular Leydig cells. Endocrinology 2002; 143:2208 - 15; http://dx.doi.org/10.1210/en.143.6.2208; PMID: 12021184
  • Xu X, Li T, Luo Q, Hong X, Xie L, Tian D. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats. Toxicol Appl Pharmacol 2011; 255:221 - 8; http://dx.doi.org/10.1016/j.taap.2011.06.022; PMID: 21763338
  • Watson CS, Campbell CH, Gametchu B. Membrane oestrogen receptors on rat pituitary tumour cells: immuno-identification and responses to oestradiol and xenoestrogens. Exp Physiol 1999; 84:1013 - 22; http://dx.doi.org/10.1111/j.1469-445X.1999.01903.x; PMID: 10564698
  • Norfleet AM, Thomas ML, Watson CS. Modulation of membrane estrogen receptor-α levels by nuclear estrogen receptor-α antisense oligodeoxynucleotides in the rat pituitary tumor cell line, GH3/B6/F10. Endocrine Society Meeting 1999
  • Pedram A, Razandi M, Levin ER. Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 2006; 20:1996 - 2009; http://dx.doi.org/10.1210/me.2005-0525; PMID: 16645038
  • Pedram A, Razandi M, Deschenes RJ, Levin ER. DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors. Mol Biol Cell 2012; 23:188 - 99; http://dx.doi.org/10.1091/mbc.E11-07-0638; PMID: 22031296
  • Watson CS, Gametchu B. Membrane-initiated steroid actions and the proteins that mediate them. Proc Soc Exp Biol Med 1999; 220:9 - 19; http://dx.doi.org/10.1046/j.1525-1373.1999.d01-2.x; PMID: 9893163
  • Watson CS, Lange CA. Steadying the boat: integrating mechanisms of membrane and nuclear-steroid-receptor signalling. EMBO Rep 2005; 6:116 - 9; http://dx.doi.org/10.1038/sj.embor.7400336; PMID: 15678158
  • Schug TT, Abagyan R, Blumberg B, Collins T, Crews D, DeFur P, et al. Designing endocrine disruption out of the next generation of chemicals. Green Chem 2012; 1:181 - 98
  • Pappas TC, Gametchu B, Yannariello-Brown J, Collins TJ, Watson CS. Membrane estrogen receptors in GH3/B6 cells are associated with rapid estrogen-induced release of prolactin. Endocrine 1994; 2:813 - 22
  • Pappas TC, Gametchu B, Watson CS. Membrane estrogen receptor-enriched GH(3)/B6 cells have an enhanced non-genomic response to estrogen. Endocrine 1995; 3:743 - 9; http://dx.doi.org/10.1007/BF03000207; PMID: 21153164
  • Bulayeva NN, Wozniak AL, Lash LL, Watson CS. Mechanisms of membrane estrogen receptor-alpha-mediated rapid stimulation of Ca2+ levels and prolactin release in a pituitary cell line. Am J Physiol Endocrinol Metab 2005; 288:E388 - 97; http://dx.doi.org/10.1152/ajpendo.00349.2004; PMID: 15494610
  • Viñas R, Watson CS. Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions. Environ Health Perspect 2013; 121:352 - 8; http://dx.doi.org/10.1289/ehp.1205826; PMID: 23458715
  • Vinas R, Watson CS. Mixtures of xenoestrogens disrupt estradiol-induced nongenomic signaling and functions in pituitary cells. BMC Environmental Health 2013
  • Demarest KT, Riegle GD, Moore KE. Pharmacological manipulation of anterior pituitary dopamine content in the male rat: relationship to serum prolactin concentration and lysosomal enzyme activity. Endocrinology 1984; 115:493 - 500; http://dx.doi.org/10.1210/endo-115-2-493; PMID: 6745164
  • Connolly PB, Resko JA. Estrone sulfatase activity in rat brain and pituitary: effects of gonadectomy and the estrous cycle. J Steroid Biochem 1989; 33:1013 - 8; http://dx.doi.org/10.1016/0022-4731(89)90254-9; PMID: 2601328
  • Oleson L, Court MH. Effect of the beta-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases. J Pharm Pharmacol 2008; 60:1175 - 82; http://dx.doi.org/10.1211/jpp.60.9.0009; PMID: 18718121