3,198
Views
29
CrossRef citations to date
0
Altmetric
Review

PBDE flame retardants

Toxicokinetics and thyroid hormone endocrine disruption in fish

&
Article: e29430 | Received 07 Feb 2014, Accepted 02 Jun 2014, Published online: 17 Jun 2014

References

  • Hale RC, La Guardia MJ, Harvey E, Gaylor MO, Mainor TM. Brominated flame retardant concentrations and trends in abiotic media. Chemosphere 2006; 64:181 - 6; http://dx.doi.org/10.1016/j.chemosphere.2005.12.006; PMID: 16434082
  • Hites RA. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ Sci Technol 2004; 38:945 - 56; http://dx.doi.org/10.1021/es035082g; PMID: 14998004
  • Gauthier LT, Hebert CE, Weseloh DVC, Letcher RJ. Dramatic changes in the temporal trends of polybrominated diphenyl ethers (PBDEs) in herring gull eggs from the Laurentian Great Lakes: 1982-2006. Environ Sci Technol 2008; 42:1524 - 30; http://dx.doi.org/10.1021/es702382k; PMID: 18441798
  • Klosterhaus SL, Stapleton HM, La Guardia MJ, Greig DJ. Brominated and chlorinated flame retardants in San Francisco Bay sediments and wildlife. Environ Int 2012; 47:56 - 65; http://dx.doi.org/10.1016/j.envint.2012.06.005; PMID: 22766500
  • Law RJ, Herzke D, Harrad S, Morris S, Bersuder P, Allchin CR. Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere 2008; 73:223 - 41; http://dx.doi.org/10.1016/j.chemosphere.2008.02.066; PMID: 18472134
  • Garcia-Reyero N, Escalon BL, Prats E, Stanley JK, Thienpont B, Melby NL, Barón E, Eljarrat E, Barceló D, Mestres J, et al. Effects of BDE-209 contaminated sediments on zebrafish development and potential implications to human health. Environ Int 2014; 63:216 - 23; http://dx.doi.org/10.1016/j.envint.2013.11.012; PMID: 24317228
  • Schecter A, Harris TR, Brummitt S, Shah N, Paepke O. PBDE and HBCD Brominated Flame Retardants in the USA, Update 2008: Levels in Human Milk and Blood, Food, and Environmental Samples. Epidemiology 2008; 19:S76
  • Shaw SD, Kannan K. Polybrominated diphenyl ethers in marine ecosystems of the American continents: foresight from current knowledge. Rev Environ Health 2009; 24:157 - 229; http://dx.doi.org/10.1515/REVEH.2009.24.3.157; PMID: 19891120
  • Voorspoels S, Covaci A, Lepom P, Escutenaire S, Schepens P. Remarkable findings concerning PBDEs in the terrestrial top-predator red fox (Vulpes vulpes). Environ Sci Technol 2006; 40:2937 - 43; http://dx.doi.org/10.1021/es060081k; PMID: 16719094
  • Hale RC, La Guardia MJ, Harvey E, Mainor TM. Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere 2002; 46:729 - 35; http://dx.doi.org/10.1016/S0045-6535(01)00237-5; PMID: 11999796
  • UNEP. Listing of commercial pentabromodiphenyl ether and commercial octabromodiphenyl ether. United Nations Environment Programme; Stockholm Convention. UNEP-POPS-COP.4-SC-4-18. Available on-line at: http://chm.pops.int/Implementation/NewPOPs/TheNewPOPs/tabid/672/Default.aspx. 2009.
  • Weil ED, Levchik SV. Flame retardants for polystyrenes in commercial use or development. J Fire Sci 2007; 25:241 - 65; http://dx.doi.org/10.1177/0734904107071607
  • Fink U, Hajduk F, Wei Y, Mori H. Flame Retardants. SRI Consulting, Englewood, CO. Available on-line at: http://www.ihs.com/products/chemical/planning/scup/flame-retardants.aspx?pu=1&rd=chemihs and http://www.flameretardants-online.com/web/en/106/114.htm. 2008.
  • Posner S, Roos S, Olsson E. Exploration of Management Options for HBCD. Swerea IVF, Swerea Group, Molindal, Sweden. Swerea IVF Project Report 10/11. 2011
  • Ni K, Lu Y, Wang T, Shi Y, Kannan K, Xu L, Li Q, Liu S. Polybrominated diphenyl ethers (PBDEs) in China: policies and recommendations for sound management of plastics from electronic wastes. J Environ Manage 2013; 115:114 - 23; http://dx.doi.org/10.1016/j.jenvman.2012.09.031; PMID: 23246772
  • Law RJ, Alaee M, Allchin CR, Boon JP, Lebeuf M, Lepom P, Stern GA. Levels and trends of polybrominated diphenylethers and other brominated flame retardants in wildlife. Environ Int 2003; 29:757 - 70; http://dx.doi.org/10.1016/S0160-4120(03)00110-7; PMID: 12850094
  • Shaw SD, Berger ML, Brenner D, Kannan K, Lohmann N, Päpke O. Bioaccumulation of polybrominated diphenyl ethers and hexabromocyclododecane in the northwest Atlantic marine food web. Sci Total Environ 2009; 407:3323 - 9; http://dx.doi.org/10.1016/j.scitotenv.2009.02.018; PMID: 19269019
  • Stapleton HM, Eagle S, Sjödin A, Webster TF. Serum PBDEs in a North Carolina toddler cohort: associations with handwipes, house dust, and socioeconomic variables. Environ Health Perspect 2012; 120:1049 - 54; http://dx.doi.org/10.1289/ehp.1104802; PMID: 22763040
  • Wu N, Herrmann T, Paepke O, Tickner J, Hale R, Harvey LE, La Guardia M, McClean MD, Webster TF. Human exposure to PBDEs: associations of PBDE body burdens with food consumption and house dust concentrations. Environ Sci Technol 2007; 41:1584 - 9; http://dx.doi.org/10.1021/es0620282; PMID: 17396645
  • Law RJ, Herzke D. Current levels and trends of brominated flame retardants in the environment. In: Barcelo D, Kostianoy AG, eds. The Handbook of Environmental Chemistry; Brominated Flame Retardants. Heidelberg, Germany: Springer Publishing Services, 2011:123-41.
  • Trudel D, Scheringer M, von Goetz N, Hungerbühler K. Total consumer exposure to polybrominated diphenyl ethers in North America and Europe. Environ Sci Technol 2011; 45:2391 - 7; http://dx.doi.org/10.1021/es1035046; PMID: 21348481
  • de Wit CA, Herzke D, Vorkamp K. Brominated flame retardants in the Arctic environment--trends and new candidates. Sci Total Environ 2010; 408:2885 - 918; http://dx.doi.org/10.1016/j.scitotenv.2009.08.037; PMID: 19815253
  • Stapleton HM, Dodder NG. Photodegradation of decabromodiphenyl ether in house dust by natural sunlight. Environ Toxicol Chem 2008; 27:306 - 12; http://dx.doi.org/10.1897/07-301R.1; PMID: 18348638
  • Gerecke AC, Hartmann PC, Heeb NV, Kohler HPE, Giger W, Schmid P, Zennegg M, Kohler M. Anaerobic degradation of decabromodiphenyl ether. Environ Sci Technol 2005; 39:1078 - 83; http://dx.doi.org/10.1021/es048634j; PMID: 15773480
  • Stapleton HM, Alaee M, Letcher RJ, Baker JE. Debromination of the flame retardant decabromodiphenyl ether by juvenile carp (Cyprinus carpio) following dietary exposure. Environ Sci Technol 2004; 38:112 - 9; http://dx.doi.org/10.1021/es034746j; PMID: 14740725
  • Dodson RE, Perovich LJ, Covaci A, Van den Eede N, Ionas AC, Dirtu AC, Brody JG, Rudel RA. After the PBDE phase-out: a broad suite of flame retardants in repeat house dust samples from California. Environ Sci Technol 2012; 46:13056 - 66; http://dx.doi.org/10.1021/es303879n; PMID: 23185960
  • Dinn PM, Johannessen SC, Ross PS, Macdonald RW, Whiticar MJ, Lowe CJ, van Roodselaar A. PBDE and PCB accumulation in benthos near marine wastewater outfalls: the role of sediment organic carbon. Environ Pollut 2012; 171:241 - 8; http://dx.doi.org/10.1016/j.envpol.2012.07.023; PMID: 22960365
  • Kohler M, Zennegg M, Bogdal C, Gerecke AC, Schmid P, Heeb NV, Sturm M, Vonmont H, Kohler HP, Giger W. Temporal trends, congener patterns, and sources of octa-, nona-, and decabromodiphenyl ethers (PBDE) and hexabromocyclododecanes (HBCD) in Swiss lake sediments. Environ Sci Technol 2008; 42:6378 - 84; http://dx.doi.org/10.1021/es702586r; PMID: 18800504
  • Marvin C, Waltho J, Jia J, Burniston D. Spatial distributions and temporal trends in polybrominated diphenyl ethers in Detroit River suspended sediments. Chemosphere 2013; 91:778 - 83; http://dx.doi.org/10.1016/j.chemosphere.2013.02.009; PMID: 23478126
  • Hale RC, Alaee M, Manchester-Neesvig JB, Stapleton HM, Ikonomou MG. Polybrominated diphenyl ether flame retardants in the North American environment. Environ Int 2003; 29:771 - 9; http://dx.doi.org/10.1016/S0160-4120(03)00113-2; PMID: 12850095
  • Peng X, Tang C, Yu Y, Tan J, Huang Q, Wu J, Chen S, Mai B. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China. Environ Int 2009; 35:303 - 9; http://dx.doi.org/10.1016/j.envint.2008.07.021; PMID: 18774173
  • Huang K, Lin K, Guo J, Zhou X, Wang J, Zhao J, Zhou P, Xu F, Liu L, Zhang W. Polybrominated diphenyl ethers in birds from Chongming Island, Yangtze estuary, China: insight into migratory behavior. Chemosphere 2013; 91:1416 - 25; http://dx.doi.org/10.1016/j.chemosphere.2013.01.042; PMID: 23411092
  • Chen D, Hale RC. A global review of polybrominated diphenyl ether flame retardant contamination in birds. Environ Int 2010; 36:800 - 11; http://dx.doi.org/10.1016/j.envint.2010.05.013; PMID: 20557935
  • Mizukawa H, Nomiyama K, Nakatsu S, Yachimori S, Hayashi T, Tashiro Y, Nagano Y, Tanabe S. Species-specific differences in the accumulation features of organohalogen contaminants and their metabolites in the blood of Japanese terrestrial mammals. Environ Pollut 2013; 174:28 - 37; http://dx.doi.org/10.1016/j.envpol.2012.11.004; PMID: 23246744
  • Shaw SD, Berger ML, Weijs L, Covaci A. Tissue-specific accumulation of polybrominated diphenyl ethers (PBDEs) including Deca-BDE and hexabromocyclododecanes (HBCDs) in harbor seals from the northwest Atlantic. Environ Int 2012; 44:1 - 6; http://dx.doi.org/10.1016/j.envint.2012.01.001; PMID: 22321537
  • Yu L, Luo X, Zheng X, Zeng Y, Chen D, Wu J, Mai B. Occurrence and biomagnification of organohalogen pollutants in two terrestrial predatory food chains. Chemosphere 2013; 93:506 - 11; http://dx.doi.org/10.1016/j.chemosphere.2013.06.023; PMID: 23830888
  • La Guardia MJ, Hale RC, Harvey E, Mainor TM, Ciparis S. In situ accumulation of HBCD, PBDEs, and several alternative flame-retardants in the bivalve (Corbicula fluminea) and gastropod (Elimia proxima). Environ Sci Technol 2012; 46:5798 - 805; http://dx.doi.org/10.1021/es3004238; PMID: 22571713
  • Bi X, Thomas GO, Jones KC, Qu W, Sheng G, Martin FL, Fu J. Exposure of electronics dismantling workers to polybrominated diphenyl ethers, polychlorinated biphenyls, and organochlorine pesticides in South China. Environ Sci Technol 2007; 41:5647 - 53; http://dx.doi.org/10.1021/es070346a; PMID: 17874768
  • He S, Li M, Jin J, Wang Y, Bu Y, Xu M, Yang X, Liu A. Concentrations and trends of halogenated flame retardants in the pooled serum of residents of Laizhou Bay, China. Environ Toxicol Chem 2013; 32:1242 - 7; http://dx.doi.org/10.1002/etc.2172; PMID: 23408421
  • Lunder S, Hovander L, Athanassiadis I, Bergman A. Significantly higher polybrominated diphenyl ether levels in young U.S. children than in their mothers. Environ Sci Technol 2010; 44:5256 - 62; http://dx.doi.org/10.1021/es1009357; PMID: 20540541
  • La Guardia MJ, Hale RC, Harvey E. Evidence of debromination of decabromodiphenyl ether (BDE-209) in biota from a wastewater receiving stream. Environ Sci Technol 2007; 41:6663 - 70; http://dx.doi.org/10.1021/es070728g; PMID: 17969678
  • Arkoosh MR, Boylen D, Dietrich J, Anulacion BF, Ginaylitalo, Bravo CF, Johnson LL, Loge FJ, Collier TK. Disease susceptibility of salmon exposed to polybrominated diphenyl ethers (PBDEs). Aquat Toxicol 2010; 98:51 - 9; http://dx.doi.org/10.1016/j.aquatox.2010.01.013; PMID: 20207027
  • Birchmeier KL, Smith KA, Passino-Reader DR, Sweet LI, Chernyak SM, Adams JV, Omann GM. Effects of selected polybrominated diphenyl ether flame retardants on lake trout (Salvelinus namaycush). Environ Toxicol Chem 2005; 24:1518 - 22; http://dx.doi.org/10.1897/04-347R.1; PMID: 16117131
  • Shao J, Eckert ML, Lee LEJ, Gallagher EP. Comparative oxygen radical formation and toxicity of BDE 47 in rainbow trout cell lines. Mar Environ Res 2008; 66:7 - 8; http://dx.doi.org/10.1016/j.marenvres.2008.02.007; PMID: 18400291
  • van Boxtel AL, Kamstra JH, Cenijn PH, Pieterse B, Wagner JM, Antink M, Krab K, van der Burg B, Marsh G, Brouwer A, et al. Microarray analysis reveals a mechanism of phenolic polybrominated diphenylether toxicity in zebrafish. Environ Sci Technol 2008; 42:1773 - 9; http://dx.doi.org/10.1021/es0720863; PMID: 18441834
  • Zhao A, Liu H, Zhang A, Wang X, Zhang H, Wang H. Effect of BDE-209 on glutathione system in Carassius auratus. Environ Toxicol Pharmacol 2011; 32:35 - 9; http://dx.doi.org/10.1016/j.etap.2011.03.004; PMID: 21787727
  • NTP. Toxicology and carcinogenesis studies of decabromodiphenyl oxide (CAS no. 1163-19-5) in F344/N and B 6c3F1 mice (fed studies). National Toxicology Program, National Instititute of Environmental Health and Safety. Available on-line at: ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr309.pdf. NTP: National Toxicology Program. NTP TR 309, 1986.
  • Dingemans MML, van den Berg M, Westerink RHS. Neurotoxicity of brominated flame retardants: (in)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system. Environ Health Perspect 2011; 119:900 - 7; http://dx.doi.org/10.1289/ehp.1003035; PMID: 21245014
  • Costa LG, Giordano G. Is decabromodiphenyl ether (BDE-209) a developmental neurotoxicant?. Neurotoxicology 2011; 32:9 - 24; http://dx.doi.org/10.1016/j.neuro.2010.12.010; PMID: 21182867
  • Staskal D, Birnbaum L. Human health effects of brominated flame retardants. In: Barcelo D, Kostianoy AG, eds. The Handbook of Environmental Chemistry; Brominated Flame Retardants. Heidelberg, Germany: Springer Publishing Services, 2011:19-54.
  • Burreau S, Axelman J, Broman D, Jakobsson E. Dietary uptake in pike (Esox lucius) of some polychlorinated biphenyls, polychlorinated naphthalenes and polybrominated diphenyl ethers administered in natural diet. Environ Toxicol Chem 1997; 16:2508 - 13; http://dx.doi.org/10.1897/1551-5028(1997)016<2508:DUIPEL>2.3.CO;2
  • Burreau S, Broman D, Orn U. Tissue distribution of 2,2′,4,4′-tetrabromo[14C]diphenyl ether ([14C]-PBDE 47) in pike (Esox lucius) after dietary exposure--a time series study using whole body autoradiography. Chemosphere 2000; 40:977 - 85; http://dx.doi.org/10.1016/S0045-6535(99)00342-2; PMID: 10739035
  • Chen LJ, Lebetkin EH, Sanders JM, Burka LT. Metabolism and disposition of 2,2′,4,4′,5-pentabromodiphenyl ether (BDE99) following a single or repeated administration to rats or mice. Xenobiotica 2006; 36:515 - 34; http://dx.doi.org/10.1080/00498250600674477; PMID: 16769647
  • Sanders JM, Lebetkin EH, Chen LJ, Burka LT. Disposition of 2,2′,4,4′,5,5′-hexabromodiphenyl ether (BDE153) and its interaction with other polybrominated diphenyl ethers (PBDEs) in rodents. Xenobiotica 2006; 36:824 - 37; http://dx.doi.org/10.1080/00498250600815906; PMID: 16971346
  • Staskal DF, Diliberto JJ, DeVito MJ, Birnbaum LS. Toxicokinetics of BDE 47 in female mice: effect of dose, route of exposure, and time. Toxicol Sci 2005; 83:215 - 23; http://dx.doi.org/10.1093/toxsci/kfi018; PMID: 15509665
  • Munschy C, Héas-Moisan K, Tixier C, Olivier N, Gastineau O, Le Bayon N, Buchet V. Dietary exposure of juvenile common sole (Solea solea L.) to polybrominated diphenyl ethers (PBDEs): Part 1. Bioaccumulation and elimination kinetics of individual congeners and their debrominated metabolites. Environ Pollut 2011; 159:229 - 37; http://dx.doi.org/10.1016/j.envpol.2010.09.001; PMID: 20888677
  • Nyholm JR, Norman A, Norrgren L, Haglund P, Andersson PL. Uptake and biotransformation of structurally diverse brominated flame retardants in zebrafish (Danio rerio) after dietary exposure. Environ Toxicol Chem 2009; 28:1035 - 42; http://dx.doi.org/10.1897/08-302.1; PMID: 19049262
  • Stapleton HM, Letcher RJ, Baker JE. Debromination of polybrominated diphenyl ether congeners BDE 99 and BDE 183 in the intestinal tract of the common carp (Cyprinus carpio). Environ Sci Technol 2004; 38:1054 - 61; http://dx.doi.org/10.1021/es0348804; PMID: 14998018
  • Kierkegaard A, Balk L, Tjarnlund U, De Wit CA, Jansson B. Dietary uptake and biological effects of decabromodiphenyl ether in rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 1999; 33:1612 - 7; http://dx.doi.org/10.1021/es9807082
  • Stapleton HM, Brazil B, Holbrook RD, Mitchelmore CL, Benedict R, Konstantinov A, Potter D. In vivo and in vitro debromination of decabromodiphenyl ether (BDE 209) by juvenile rainbow trout and common carp. Environ Sci Technol 2006; 40:4653 - 8; http://dx.doi.org/10.1021/es060573x; PMID: 16913120
  • Noyes PD, Hinton DE, Stapleton HM. Accumulation and debromination of decabromodiphenyl ether (BDE-209) in juvenile fathead minnows (Pimephales promelas) induces thyroid disruption and liver alterations. Toxicol Sci 2011; 122:265 - 74; http://dx.doi.org/10.1093/toxsci/kfr105; PMID: 21546348
  • Noyes PD, Lema SC, Macaulay LJ, Douglas NK, Stapleton HM. Low level exposure to the flame retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows. Environ Sci Technol 2013; 47:10012 - 21; http://dx.doi.org/10.1021/es402650x; PMID: 23899252
  • Wan Y, Zhang K, Dong Z, Hu J. Distribution is a major factor affecting bioaccumulation of decabrominated diphenyl ether: Chinese sturgeon (Acipenser sinensis) as an example. Environ Sci Technol 2013; 47:2279 - 86; http://dx.doi.org/10.1021/es304926r; PMID: 23387833
  • Eskenazi B, Chevrier J, Rauch SA, Kogut K, Harley KG, Johnson C, Trujillo C, Sjödin A, Bradman A. In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study. Environ Health Perspect 2013; 121:257 - 62; PMID: 23154064
  • Petreas M, Nelson D, Brown FR, Goldberg D, Hurley S, Reynolds P. High concentrations of polybrominated diphenylethers (PBDEs) in breast adipose tissue of California women. Environ Int 2011; 37:190 - 7; http://dx.doi.org/10.1016/j.envint.2010.09.001; PMID: 20951435
  • Dominguez AA, Law RJ, Herzke D, de Boer J. Bioaccumulation of brominated flame retardants. In: Barcelo D, Kostianoy AG, eds. The Handbook of Environmental Chemistry; Brominated Flame Retardants. Heidelberg, Germany: Springer Publishing Services, 2011:141-87.
  • Xia C, Lam JCW, Wu X, Sun L, Xie Z, Lam PKS. Levels and distribution of polybrominated diphenyl ethers (PBDEs) in marine fishes from Chinese coastal waters. Chemosphere 2011; 82:18 - 24; http://dx.doi.org/10.1016/j.chemosphere.2010.10.037; PMID: 21051072
  • Kodavanti PRS, Coburn CG, Moser VC, MacPhail RC, Fenton SE, Stoker TE, Rayner JL, Kannan K, Birnbaum LS. Developmental exposure to a commercial PBDE mixture, DE-71: neurobehavioral, hormonal, and reproductive effects. Toxicol Sci 2010; 116:297 - 312; http://dx.doi.org/10.1093/toxsci/kfq105; PMID: 20375078
  • Naert C, Van Peteghem C, Kupper J, Jenni L, Naegeli H. Distribution of polychlorinated biphenyls and polybrominated diphenyl ethers in birds of prey from Switzerland. Chemosphere 2007; 68:977 - 87; http://dx.doi.org/10.1016/j.chemosphere.2007.01.009; PMID: 17307228
  • Dunnick JK, Nyska A. Characterization of liver toxicity in F344/N rats and B6C3F1 mice after exposure to a flame retardant containing lower molecular weight polybrominated diphenyl ethers. Exp Toxicol Pathol 2009; 61:1 - 12; http://dx.doi.org/10.1016/j.etp.2008.06.008; PMID: 18774282
  • Hardy ML. The toxicology of the three commercial polybrominated diphenyl oxide (ether) flame retardants. Chemosphere 2002; 46:757 - 77; http://dx.doi.org/10.1016/S0045-6535(01)00240-5; PMID: 11999799
  • Huwe JK, Hakk H, Birnbaum LS. Tissue distribution of polybrominated diphenyl ethers in male rats and implications for biomonitoring. Environ Sci Technol 2008; 42:7018 - 24; http://dx.doi.org/10.1021/es801344a; PMID: 18853825
  • Morck A, Hakk H, Orn U, Klasson Wehler E. Decabromodiphenyl ether in the rat: absorption, distribution, metabolism, and excretion. Drug Metab Dispos 2003; 31:900 - 7; http://dx.doi.org/10.1124/dmd.31.7.900; PMID: 12814967
  • Benedict RT, Stapleton HM, Letcher RJ, Mitchelmore CL. Debromination of polybrominated diphenyl ether-99 (BDE-99) in carp (Cyprinus carpio) microflora and microsomes. Chemosphere 2007; 69:987 - 93; http://dx.doi.org/10.1016/j.chemosphere.2007.05.010; PMID: 17640709
  • Boon JP, van Zanden JJ, Lewis WE, Zegers BN, Goksøyr A, Arukwe A. The expression of CYP1A, vitellogenin and zona radiata proteins in Atlantic salmon (Salmo salar) after oral dosing with two commercial PBDE flame retardant mixtures: absence of short-term responses. Mar Environ Res 2002; 54:719 - 24; http://dx.doi.org/10.1016/S0141-1136(02)00127-7; PMID: 12408642
  • Browne EP, Stapleton HM, Kelly SM, Tilton SC, Gallagher EP. In vitro hepatic metabolism of 2,2′,4,4′,5-pentabromodiphenyl ether (BDE 99) in Chinook salmon (Onchorhynchus tshawytscha). Aquat Toxicol 2009; 92:281 - 7; http://dx.doi.org/10.1016/j.aquatox.2009.02.017; PMID: 19346012
  • Cheng J, Mao L, Zhao Z, Shen M, Zhang S, Huang Q, Gao S. Bioaccumulation, depuration and biotransformation of 4,4′-dibromodiphenyl ether in crucian carp (Carassius auratus). Chemosphere 2012; 86:446 - 53; http://dx.doi.org/10.1016/j.chemosphere.2011.09.038; PMID: 22036552
  • Kuiper RV, Murk AJ, Leonards PEG, Grinwis GCM, van den Berg M, Vos JG. In vivo and in vitro Ah-receptor activation by commercial and fractionated pentabromodiphenylether using zebrafish (Danio rerio) and the DR-CALUX assay. Aquat Toxicol 2006; 79:366 - 75; http://dx.doi.org/10.1016/j.aquatox.2006.07.005; PMID: 16919340
  • Kuo Y-M, Sepúlveda MS, Sutton TM, Ochoa-Acuña HG, Muir AM, Miller B, Hua I. Bioaccumulation and biotransformation of decabromodiphenyl ether and effects on daily growth in juvenile lake whitefish (Coregonus clupeaformis). Ecotoxicology 2010; 19:751 - 60; http://dx.doi.org/10.1007/s10646-009-0451-x; PMID: 20033485
  • Munschy C, Héas-Moisan K, Tixier C, Pacepavicius G, Alaee M. Dietary exposure of juvenile common sole (Solea solea L.) to polybrominated diphenyl ethers (PBDEs): Part 2. Formation, bioaccumulation and elimination of hydroxylated metabolites. Environ Pollut 2010; 158:3527 - 33; http://dx.doi.org/10.1016/j.envpol.2010.08.021; PMID: 20864231
  • Noyes PD, Kelly SM, Mitchelmore CL, Stapleton HM. Characterizing the in vitro hepatic biotransformation of the flame retardant BDE 99 by common carp. Aquat Toxicol 2010; 97:142 - 50; http://dx.doi.org/10.1016/j.aquatox.2009.12.013; PMID: 20080306
  • Olsvik PA, Lie KK, Sturve J, Hasselberg L, Andersen OK. Transcriptional effects of nonylphenol, bisphenol A and PBDE-47 in liver of juvenile Atlantic cod (Gadus morhua). Chemosphere 2009; 75:360 - 7; http://dx.doi.org/10.1016/j.chemosphere.2008.12.039; PMID: 19167021
  • Roberts SC, Noyes PD, Gallagher EP, Stapleton HM. Species-specific differences and structure-activity relationships in the debromination of PBDE congeners in three fish species. Environ Sci Technol 2011; 45:1999 - 2005; http://dx.doi.org/10.1021/es103934x; PMID: 21291240
  • Stapleton HM, Letcher RJ, Li J, Baker JE. Dietary accumulation and metabolism of polybrominated diphenyl ethers by juvenile carp (Cyprinus carpio). Environ Toxicol Chem 2004; 23:1939 - 46; http://dx.doi.org/10.1897/03-462; PMID: 15352483
  • Wan Y, Liu F, Wiseman S, Zhang X, Chang H, Hecker M, Jones PD, Lam MH, Giesy JP. Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka. Environ Sci Technol 2010; 44:8729 - 35; http://dx.doi.org/10.1021/es102287q; PMID: 20973477
  • Zeng YH, Luo XJ, Chen HS, Yu LH, Chen SJ, Mai BX. Gastrointestinal absorption, metabolic debromination, and hydroxylation of three commercial polybrominated diphenyl ether mixtures by common carp. Environ Toxicol Chem 2012; 31:731 - 8; http://dx.doi.org/10.1002/etc.1716; PMID: 22170638
  • Letcher RJ, Klaassen-Wehler E, Bergman A. Methyl Sulfone and Hydroxylated Metabolites of Polychlorinated Biphenyls. In: Paasivirta J, ed. The Handbook of Environmental Chemistry. Berlin: Springer-Verlag, 2001:315-59.
  • Staskal DF, Hakk H, Bauer D, Diliberto JJ, Birnbaum LS. Toxicokinetics of polybrominated diphenyl ether congeners 47, 99, 100, and 153 in mice. Toxicol Sci 2006; 94:28 - 37; http://dx.doi.org/10.1093/toxsci/kfl091; PMID: 16936226
  • Tomy GT, Palace VP, Halldorson T, Braekevelt E, Danell R, Wautier K, Evans B, Brinkworth L, Fisk AT. Bioaccumulation, biotransformation, and biochemical effects of brominated diphenyl ethers in juvenile lake trout (Salvelinus namaycush). Environ Sci Technol 2004; 38:1496 - 504; http://dx.doi.org/10.1021/es035070v; PMID: 15046352
  • Blanton ML, Specker JL. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit Rev Toxicol 2007; 37:97 - 115; http://dx.doi.org/10.1080/10408440601123529; PMID: 17364706
  • Hakk H, Larsen G, Klasson-Wehler E. Tissue disposition, excretion and metabolism of 2,2′,4,4′,5-pentabromodiphenyl ether (BDE-99) in the male Sprague-Dawley rat. Xenobiotica 2002; 32:369 - 82; http://dx.doi.org/10.1080/00498250110119117; PMID: 12065060
  • Fernie KJ, Shutt JL, Mayne G, Hoffman D, Letcher RJ, Drouillard KG, Ritchie IJ. Exposure to polybrominated diphenyl ethers (PBDEs): changes in thyroid, vitamin A, glutathione homeostasis, and oxidative stress in American kestrels (Falco sparverius). Toxicol Sci 2005; 88:375 - 83; http://dx.doi.org/10.1093/toxsci/kfi295; PMID: 16120752
  • Feng C, Xu Y, Zhao G, Zha J, Wu F, Wang Z. Relationship between BDE 209 metabolites and thyroid hormone levels in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 2012; 122-123:28 - 35; http://dx.doi.org/10.1016/j.aquatox.2012.05.008; PMID: 22721785
  • Stapleton HM. Instrumental methods and challenges in quantifying polybrominated diphenyl ethers in environmental extracts: a review. Anal Bioanal Chem 2006; 386:807 - 17; http://dx.doi.org/10.1007/s00216-006-0400-y; PMID: 17165211
  • Chen TH, Cheng YM, Cheng JO, Chou CT, Hsiao YC, Ko FC. Growth and transcriptional effect of dietary 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) exposure in developing zebrafish (Danio rerio). Ecotoxicol Environ Saf 2010; 73:377 - 83; http://dx.doi.org/10.1016/j.ecoenv.2009.12.033; PMID: 20074802
  • Kuiper RV, Vethaak AD, Cantón RF, Anselmo H, Dubbeldam M, van den Brandhof EJ, Leonards PE, Wester PW, van den Berg M. Toxicity of analytically cleaned pentabromodiphenylether after prolonged exposure in estuarine European flounder (Platichthys flesus), and partial life-cycle exposure in fresh water zebrafish (Danio rerio). Chemosphere 2008; 73:195 - 202; http://dx.doi.org/10.1016/j.chemosphere.2008.04.079; PMID: 18556046
  • Kuiper RV, Bergman A, Vos JG, van den Berg M. Some polybrominated diphenyl ether (PBDE) flame retardants with wide environmental distribution inhibit TCDD-induced EROD activity in primary cultured carp (Cyprinus carpio) hepatocytes. Aquat Toxicol 2004; 68:129 - 39; http://dx.doi.org/10.1016/j.aquatox.2004.03.005; PMID: 15145223
  • Timme-Laragy AR, Levin ED, Di Giulio RT. Developmental and behavioral effects of embryonic exposure to the polybrominated diphenylether mixture DE-71 in the killifish (Fundulus heteroclitus). Chemosphere 2006; 62:1097 - 104; http://dx.doi.org/10.1016/j.chemosphere.2005.05.037; PMID: 16045967
  • Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K, Negishi M. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol 1999; 19:6318 - 22; PMID: 10454578
  • Schlenk D, Celander M, Gallagher EP, George SC, James M, Kullman SW, et al. Biotransformation in Fishes. In: Di Giulio RT, Hinton DE, eds. The Toxicology of Fishes. New York: CRC Press, 2008:153-234.
  • McArthur AG, Hegelund T, Cox RL, Stegeman JJ, Liljenberg M, Olsson U, Sundberg P, Celander MC. Phylogenetic analysis of the cytochrome P450 3 (CYP3) gene family. J Mol Evol 2003; 57:200 - 11; http://dx.doi.org/10.1007/s00239-003-2466-x; PMID: 14562963
  • Leaver MJ, Wright J, Hodgson P, Boukouvala E, George SG. Piscine UDP-glucuronosyltransferase 1B. Aquat Toxicol 2007; 84:356 - 65; http://dx.doi.org/10.1016/j.aquatox.2007.06.015; PMID: 17686537
  • Liu TA, Bhuiyan S, Liu MY, Sugahara T, Sakakibara Y, Suiko M, Yasuda S, Kakuta Y, Kimura M, Williams FE, et al. Zebrafish as a model for the study of the phase II cytosolic sulfotransferases. Curr Drug Metab 2010; 11:538 - 46; http://dx.doi.org/10.2174/138920010791636158; PMID: 20545621
  • Sugahara T, Liu CC, Pai TG, Collodi P, Suiko M, Sakakibara Y, Nishiyama K, Liu MC. Sulfation of hydroxychlorobiphenyls. Molecular cloning, expression, and functional characterization of zebrafish SULT1 sulfotransferases. Eur J Biochem 2003; 270:2404 - 11; http://dx.doi.org/10.1046/j.1432-1033.2003.03608.x; PMID: 12755695
  • George SG, Taylor B. Molecular evidence for multiple UDP-glucuronosyltransferase gene familes in fish. Mar Environ Res 2002; 54:253 - 7; http://dx.doi.org/10.1016/S0141-1136(02)00186-1; PMID: 12408571
  • Chen Q, Yu L, Yang L, Zhou B. Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. Aquat Toxicol 2012; 110-111:141 - 8; http://dx.doi.org/10.1016/j.aquatox.2012.01.008; PMID: 22307006
  • Hakk H, Huwe JK, Larsen GL. Absorption, distribution, metabolism and excretion (ADME) study with 2,2′,4,4′,5,6′-hexabromodiphenyl ether (BDE-154) in male Sprague-Dawley rats. Xenobiotica 2009; 39:46 - 56; http://dx.doi.org/10.1080/00498250802546853; PMID: 19219747
  • Muirhead EK, Skillman AD, Hook SE, Schultz IR. Oral exposure of PBDE-47 in fish: toxicokinetics and reproductive effects in Japanese Medaka (Oryzias latipes) and fathead minnows (Pimephales promelas). Environ Sci Technol 2006; 40:523 - 8; http://dx.doi.org/10.1021/es0513178; PMID: 16468398
  • Geyer HJ, Schramm KW, Darnerud PO, Aune M, Feight A, Fried KW, et al. Terminal elimination half-lives of the brominated flame retardants TBBPA, HBCD, and lower brominated PBDEs in humans. Organohal Comp 2004; 66.
  • von Meyerinck L, Hufnagel B, Schmoldt A, Benthe HF. Induction of rat liver microsomal cytochrome P-450 by the pentabromo diphenyl ether Bromkal 70 and half-lives of its components in the adipose tissue. Toxicology 1990; 61:259 - 74; http://dx.doi.org/10.1016/0300-483X(90)90176-H; PMID: 2330598
  • Thuresson K, Höglund P, Hagmar L, Sjödin A, Bergman A, Jakobsson K. Apparent half-lives of hepta- to decabrominated diphenyl ethers in human serum as determined in occupationally exposed workers. Environ Health Perspect 2006; 114:176 - 81; http://dx.doi.org/10.1289/ehp.8350; PMID: 16451851
  • Sandholm A, Emanuelsson BM, Wehler EK. Bioavailability and half-life of decabromodiphenyl ether (BDE-209) in rat. Xenobiotica 2003; 33:1149 - 58; http://dx.doi.org/10.1080/00498250310001609156; PMID: 14660178
  • Huwe JK, Smith DJ. Accumulation, whole-body depletion, and debromination of decabromodiphenyl ether in male sprague-dawley rats following dietary exposure. Environ Sci Technol 2007; 41:2371 - 7; http://dx.doi.org/10.1021/es061954d; PMID: 17438789
  • Anderson GW. Thyroid hormone and cerebellar development. Cerebellum 2008; 7:60 - 74; http://dx.doi.org/10.1007/s12311-008-0021-4; PMID: 18418681
  • Kapoor R, Desouza LA, Nanavaty IN, Kernie SG, Vaidya VA. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors. J Neuroendocrinol 2012; 24:1259 - 71; http://dx.doi.org/10.1111/j.1365-2826.2012.02329.x; PMID: 22497336
  • Shiao JC, Hwang PP. Thyroid hormones are necessary for the metamorphosis of tarpon Megalops cyprinoides leptocephali. J Exp Mar Biol Ecol 2006; 331:121 - 32; http://dx.doi.org/10.1016/j.jembe.2005.10.014
  • Schreiber AM, Specker JL. Metamorphosis in the summer flounder (Paralichthys dentatus): stage-specific developmental response to altered thyroid status. Gen Comp Endocrinol 1998; 111:156 - 66; http://dx.doi.org/10.1006/gcen.1998.7095; PMID: 9679087
  • Klaren PHM, Guzman JM, Mancera JM, Geven EJW, Flik G. The involvement of thyroid hormone metabolism in Gilthead sea bream. (Sparus auratus) osmoregulation. In: Vaudry H, Roubos E, Schoofs L, Fiik G, Larhammar D, eds. Trends in Comparative Endocrinology and Neurobiology, 2005:360-2.
  • Lema SC, Nevitt GA. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting. J Exp Biol 2004; 207:3317 - 27; http://dx.doi.org/10.1242/jeb.01143; PMID: 15326208
  • Peter MCS. The role of thyroid hormones in stress response of fish. Gen Comp Endocrinol 2011; 172:198 - 210; http://dx.doi.org/10.1016/j.ygcen.2011.02.023; PMID: 21362420
  • Coffin AB, Raine JC, Hawryshyn CW. Exposure to thyroid hormone in ovo affects otolith crystallization in rainbow trout Oncorhynchus mykiss. Exp Biol Fishes 2012; 95:347 - 54; http://dx.doi.org/10.1007/s10641-012-0007-4
  • Nelson ER, Allan ERO, Pang FY, Habibi HR. Thyroid hormone and reproduction: regulation of estrogen receptors in goldfish gonads. Mol Reprod Dev 2010; 77:784 - 94; http://dx.doi.org/10.1002/mrd.21219; PMID: 20722048
  • Dickhoff WW, Folmar LC, Mighell JL, Mahnken CVW. Plasma thyroid hormones during smoltification of yearling and underyearling Coho salmon and yearling Chinook salmon and Steelhead trout. Aquaculture 1982; 28:39 - 48; http://dx.doi.org/10.1016/0044-8486(82)90006-0
  • Larsen DA, Swanson P, Dickhoff WW. The pituitary-thyroid axis during the parr-smolt transformation of Coho salmon, Oncorhynchus kisutch: quantification of TSH β mRNA, TSH, and thyroid hormones. Gen Comp Endocrinol 2011; 171:367 - 72; http://dx.doi.org/10.1016/j.ygcen.2011.03.003; PMID: 21377468
  • Eales JG, Brown SB. Measurement and regulation of thyroidal status in teleost fish. Rev Fish Biol Fish 1993; 3:299 - 347; http://dx.doi.org/10.1007/BF00043383
  • Schussler GC. The thyroxine-binding proteins. Thyroid 2000; 10:141 - 9; http://dx.doi.org/10.1089/thy.2000.10.141; PMID: 10718550
  • Kawakami Y, Seoka M, Miyashita S, Kumai H, Ohta H. Characterization of transthyretin in the Pacific bluefin tuna, Thunnus orientalis. Zoolog Sci 2006; 23:443 - 8; http://dx.doi.org/10.2108/zsj.23.443; PMID: 16766863
  • Santos CRA, Power DM. Identification of transthyretin in fish (Sparus aurata): cDNA cloning and characterisation. Endocrinology 1999; 140:2430 - 3; http://dx.doi.org/10.1210/endo.140.5.6898; PMID: 10218999
  • Arjona FJ, de Vrieze E, Visser TJ, Flik G, Klaren PHM. Identification and functional characterization of zebrafish solute carrier Slc16a2 (Mct8) as a thyroid hormone membrane transporter. Endocrinology 2011; 152:5065 - 73; http://dx.doi.org/10.1210/en.2011-1166; PMID: 21952246
  • Muzzio AM, Noyes PD, Stapleton HM, Lema SC. The organic anion transporting protein (OATP) family in a teleost fish model. Integr Comp Biol 2013; 53:Suppl. 1 E340
  • Popovic M, Zaja R, Smital T. Organic anion transporting polypeptides (OATP) in zebrafish (Danio rerio): Phylogenetic analysis and tissue distribution. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:327 - 35; http://dx.doi.org/10.1016/j.cbpa.2009.11.011; PMID: 19931635
  • Visser WE, Friesema ECH, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 2011; 25:1 - 14; http://dx.doi.org/10.1210/me.2010-0095; PMID: 20660303
  • Nelson ER, Habibi HR. Thyroid receptor subtypes: structure and function in fish. Gen Comp Endocrinol 2009; 161:90 - 6; http://dx.doi.org/10.1016/j.ygcen.2008.09.006; PMID: 18840444
  • Hiroi Y, Kim HH, Ying H, Furuya F, Huang Z, Simoncini T, Noma K, Ueki K, Nguyen NH, Scanlan TS, et al. Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A 2006; 103:14104 - 9; http://dx.doi.org/10.1073/pnas.0601600103; PMID: 16966610
  • Yonkers MA, Ribera AB. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons. Neural Dev 2009; 4:20; http://dx.doi.org/10.1186/1749-8104-4-20; PMID: 19505305
  • Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci 2008; 65:570 - 90; http://dx.doi.org/10.1007/s00018-007-7396-0; PMID: 17989921
  • Orozco A, Valverde-R C, Olvera A, García-G C. Iodothyronine deiodinases: a functional and evolutionary perspective. J Endocrinol 2012; 215:207 - 19; http://dx.doi.org/10.1530/JOE-12-0258; PMID: 22872760
  • Orozco A, Villalobos P, Jeziorski MC, Valverde-R C. The liver of Fundulus heteroclitus expresses deiodinase type 1 mRNA. Gen Comp Endocrinol 2003; 130:84 - 91; http://dx.doi.org/10.1016/S0016-6480(02)00570-1; PMID: 12535629
  • Orozco A, Valverde-R C. Thyroid hormone deiodination in fish. Thyroid 2005; 15:799 - 813; http://dx.doi.org/10.1089/thy.2005.15.799; PMID: 16131323
  • Frith SD, Eales JG. Thyroid hormone deiodination pathways in brain and liver of rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 1996; 101:323 - 32; http://dx.doi.org/10.1006/gcen.1996.0035; PMID: 8729942
  • Johnson KM, Lema SC. Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri). Gen Comp Endocrinol 2011; 172:505 - 17; http://dx.doi.org/10.1016/j.ygcen.2011.04.022; PMID: 21549118
  • Wambiji N, Park Y-J, Kim S-J, Hur S-P, Takeuchi Y, Takemura A. Expression of type II iodothyronine deiodinase gene in the brain of a tropical spinefoot, Siganus guttatus. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:447 - 52; http://dx.doi.org/10.1016/j.cbpa.2011.03.023; PMID: 21463701
  • St Germain DL. The effects and interactions of substrates, inhibitors, and the cellular thiol-disulfide balance on the regulation of type II iodothyronine 5′-deiodinase. Endocrinology 1988; 122:1860 - 8; http://dx.doi.org/10.1210/endo-122-5-1860; PMID: 3359966
  • Lee E, Kim TH, Choi JS, Nabanata P, Kim NY, Ahn MY, Jung KK, Kang IH, Kim TS, Kwack SJ, et al. Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenyl ether BDE-209. J Toxicol Sci 2010; 35:535 - 45; http://dx.doi.org/10.2131/jts.35.535; PMID: 20686340
  • Richardson VM, Staskal DF, Ross DG, Diliberto JJ, DeVito MJ, Birnbaum LS. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener. Toxicol Appl Pharmacol 2008; 226:244 - 50; http://dx.doi.org/10.1016/j.taap.2007.09.015; PMID: 17964624
  • Tseng LH, Li MH, Tsai SS, Lee CW, Pan MH, Yao WJ, Hsu PC. Developmental exposure to decabromodiphenyl ether (PBDE 209): effects on thyroid hormone and hepatic enzyme activity in male mouse offspring. Chemosphere 2008; 70:640 - 7; http://dx.doi.org/10.1016/j.chemosphere.2007.06.078; PMID: 17698168
  • Butt CM, Wang D, Stapleton HM. Halogenated phenolic contaminants inhibit the in vitro activity of the thyroid-regulating deiodinases in human liver. Toxicol Sci 2011; 124:339 - 47; http://dx.doi.org/10.1093/toxsci/kfr117; PMID: 21565810
  • Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PRS, Birnbaum LS. Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci 2009; 107:27 - 39; http://dx.doi.org/10.1093/toxsci/kfn230; PMID: 18978342
  • Meerts IA, van Zanden JJ, Luijks EAC, van Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman A, Brouwer A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci 2000; 56:95 - 104; http://dx.doi.org/10.1093/toxsci/56.1.95; PMID: 10869457
  • Bloom M, Spliethoff H, Vena J, Shaver S, Addink R, Eadon G. Environmental exposure to PBDEs and thyroid function among New York anglers. Environ Toxicol Pharmacol 2008; 25:386 - 92; http://dx.doi.org/10.1016/j.etap.2007.12.004; PMID: 21783878
  • Meeker JD, Johnson PI, Camann D, Hauser R. Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men. Sci Total Environ 2009; 407:3425 - 9; http://dx.doi.org/10.1016/j.scitotenv.2009.01.030; PMID: 19211133
  • Stapleton HM, Eagle S, Anthopolos R, Wolkin A, Miranda ML. Associations between polybrominated diphenyl ether (PBDE) flame retardants, phenolic metabolites, and thyroid hormones during pregnancy. Environ Health Perspect 2011; 119:1454 - 9; http://dx.doi.org/10.1289/ehp.1003235; PMID: 21715241
  • Dong W, Macaulay LJ, Kwok KWH, Hinton DE, Stapleton HM. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Aquat Toxicol 2013; 132-133:190 - 9; http://dx.doi.org/10.1016/j.aquatox.2013.02.008; PMID: 23531416
  • Lema SC, Dickey JT, Schultz IR, Swanson P. Dietary exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone-regulated gene transcription in the pituitary and brain. Environ Health Perspect 2008; 116:1694 - 9; http://dx.doi.org/10.1289/ehp.11570; PMID: 19079722
  • Li W, Zhu L, Zha J, Wang Z. Effects of decabromodiphenyl ether (BDE-209) on mRNA transcription of thyroid hormone pathway and spermatogenesis associated genes in Chinese rare minnow (Gobiocypris rarus). Environ Toxicol 2014; 29:1 - 9; PMID: 21901812
  • Morgado I, Hamers T, Van der Ven L, Power DM. Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. Chemosphere 2007; 69:155 - 63; http://dx.doi.org/10.1016/j.chemosphere.2007.04.010; PMID: 17553549
  • Yu L, Deng J, Shi X, Liu C, Yu K, Zhou B. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae. Aquat Toxicol 2010; 97:226 - 33; http://dx.doi.org/10.1016/j.aquatox.2009.10.022; PMID: 19945756
  • Yu L, Lam JCW, Guo Y, Wu RSS, Lam PKS, Zhou B. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish. Environ Sci Technol 2011; 45:10652 - 9; http://dx.doi.org/10.1021/es2026592; PMID: 22039834
  • Bernal J. Thyroid hormones and brain development. In: Litwack G, ed. Vitamins and Hormones - Advances in Research and Applications, Vol 71, 2005:95-+.
  • Gilbert ME, Lasley SM. Developmental thyroid hormone insufficiency and brain development: a role for brain-derived neurotrophic factor (BDNF)?. Neuroscience 2013; 239:253 - 70; http://dx.doi.org/10.1016/j.neuroscience.2012.11.022; PMID: 23201250
  • Gilbert ME, Rovet J, Chen Z, Koibuchi N. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 2012; 33:842 - 52; http://dx.doi.org/10.1016/j.neuro.2011.11.005; PMID: 22138353
  • Sharlin DS, Gilbert ME, Taylor MA, Ferguson DC, Zoeller RT. The nature of the compensatory response to low thyroid hormone in the developing brain. J Neuroendocrinol 2010; 22:153 - 65; http://dx.doi.org/10.1111/j.1365-2826.2009.01947.x; PMID: 20041985
  • Zhou T, Taylor MM, DeVito MJ, Crofton KM. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol Sci 2002; 66:105 - 16; http://dx.doi.org/10.1093/toxsci/66.1.105; PMID: 11861977
  • Zhou T, Ross DG, DeVito MJ, Crofton KM. Effects of short-term in vivo exposure to polybrominated diphenyl ethers on thyroid hormones and hepatic enzyme activities in weanling rats. Toxicol Sci 2001; 61:76 - 82; http://dx.doi.org/10.1093/toxsci/61.1.76; PMID: 11294977
  • Hallgren S, Sinjari T, Håkansson H, Darnerud PO. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol 2001; 75:200 - 8; http://dx.doi.org/10.1007/s002040000208; PMID: 11482517
  • Marchesini GR, Meimaridou A, Haasnoot W, Meulenberg E, Albertus F, Mizuguchi M, Takeuchi M, Irth H, Murk AJ. Biosensor discovery of thyroxine transport disrupting chemicals. Toxicol Appl Pharmacol 2008; 232:150 - 60; http://dx.doi.org/10.1016/j.taap.2008.06.014; PMID: 18647617
  • Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Visser TJ, Van Velzen MJM, Brouwer A, Bergman A. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). Mol Nutr Food Res 2008; 52:284 - 98; http://dx.doi.org/10.1002/mnfr.200700104; PMID: 18161906
  • Ren XM, Guo LH. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe. Environ Sci Technol 2012; 46:4633 - 40; http://dx.doi.org/10.1021/es2046074; PMID: 22482873
  • Muzzio AM, Noyes PD, Stapleton HM, Lema SC. Tissue distribution and thyroid hormone effects on mRNA abundance for membrane transporters Mct8, Mct10, and organic anion-transporting polypeptides (Oatps) in a teleost fish. Comp Biochem Physiol A Mol Integr Physiol 2014; 167:77 - 89; http://dx.doi.org/10.1016/j.cbpa.2013.09.019; PMID: 24113777
  • Friesema ECH, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 2003; 278:40128 - 35; http://dx.doi.org/10.1074/jbc.M300909200; PMID: 12871948
  • van der Deure WM, Hansen PS, Peeters RP, Kyvik KO, Friesema ECH, Hegedüs L, Visser TJ. Thyroid hormone transport and metabolism by organic anion transporter 1C1 and consequences of genetic variation. Endocrinology 2008; 149:5307 - 14; http://dx.doi.org/10.1210/en.2008-0430; PMID: 18566113
  • Pacyniak E, Roth M, Hagenbuch B, Guo GL. Mechanism of polybrominated diphenyl ether uptake into the liver: PBDE congeners are substrates of human hepatic OATP transporters. Toxicol Sci 2010; 115:344 - 53; http://dx.doi.org/10.1093/toxsci/kfq059; PMID: 20176623
  • Pacyniak E, Hagenbuch B, Klaassen CD, Lehman-McKeeman L, Guo GL. Organic anion transporting polypeptides in the hepatic uptake of PBDE congeners in mice. Toxicol Appl Pharmacol 2011; 257:23 - 31; http://dx.doi.org/10.1016/j.taap.2011.08.014; PMID: 21884716
  • Essner JJ, Breuer JJ, Essner RD, Fahrenkrug SC, Hackett PB Jr.. The zebrafish thyroid hormone receptor alpha 1 is expressed during early embryogenesis and can function in transcriptional repression. Differentiation 1997; 62:107 - 17; http://dx.doi.org/10.1046/j.1432-0436.1997.6230107.x; PMID: 9447705
  • Liu YW, Lo LJ, Chan WK. Temporal expression and T3 induction of thyroid hormone receptors alpha1 and beta1 during early embryonic and larval development in zebrafish, Danio rerio. Mol Cell Endocrinol 2000; 159:187 - 95; http://dx.doi.org/10.1016/S0303-7207(99)00193-8; PMID: 10687864
  • Yamano K, Miwa S. Differential gene expression of thyroid hormone receptor alpha and beta in fish development. Gen Comp Endocrinol 1998; 109:75 - 85; http://dx.doi.org/10.1006/gcen.1997.7011; PMID: 9446725
  • Nelson ER, Habibi HR. Molecular characterization and sex-related seasonal expression of thyroid receptor subtypes in goldfish. Mol Cell Endocrinol 2006; 253:83 - 95; http://dx.doi.org/10.1016/j.mce.2006.05.003; PMID: 16777315
  • Filby AL, Tyler CR. Cloning and characterization of cDNAs for hormones and/or receptors of growth hormone, insulin-like growth factor-I, thyroid hormone, and corticosteroid and the gender-, tissue-, and developmental-specific expression of their mRNA transcripts in fathead minnow (Pimephales promelas). Gen Comp Endocrinol 2007; 150:151 - 63; http://dx.doi.org/10.1016/j.ygcen.2006.07.014; PMID: 16970945
  • Lema SC, Dickey JT, Schultz IR, Swanson P. Thyroid hormone regulation of mRNAs encoding thyrotropin beta-subunit, glycoprotein alpha-subunit, and thyroid hormone receptors alpha and beta in brain, pituitary gland, liver, and gonads of an adult teleost, Pimephales promelas. J Endocrinol 2009; 202:43 - 54; http://dx.doi.org/10.1677/JOE-08-0472; PMID: 19380459
  • Marchand O, Safi R, Escriva H, Van Rompaey E, Prunet P, Laudet V. Molecular cloning and characterization of thyroid hormone receptors in teleost fish. J Mol Endocrinol 2001; 26:51 - 65; http://dx.doi.org/10.1677/jme.0.0260051; PMID: 11174854
  • Bertrand S, Thisse B, Tavares R, Sachs L, Chaumot A, Bardet PL, Escrivà H, Duffraisse M, Marchand O, Safi R, et al. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet 2007; 3:e188; http://dx.doi.org/10.1371/journal.pgen.0030188; PMID: 17997606
  • Takayama S, Hostick U, Haendel M, Eisen J, Darimont B. An F-domain introduced by alternative splicing regulates activity of the zebrafish thyroid hormone receptor alpha. Gen Comp Endocrinol 2008; 155:176 - 89; http://dx.doi.org/10.1016/j.ygcen.2007.04.012; PMID: 17583703
  • Darras VM, Van Herck SL, Heijlen M, De Groef B. Thyroid hormone receptors in two model species for vertebrate embryonic development: chicken and zebrafish. J Thyroid Res 2011; 2011:402320; http://dx.doi.org/10.4061/2011/402320; PMID: 21760979
  • Ren X-M, Guo L-H. Molecular toxicology of polybrominated diphenyl ethers: nuclear hormone receptor mediated pathways. Environ Sci Process Impacts 2013; 15:702 - 8; http://dx.doi.org/10.1039/c3em00023k; PMID: 23467608
  • Zoeller RT. Environmental chemicals as thyroid hormone analogues: new studies indicate that thyroid hormone receptors are targets of industrial chemicals?. Mol Cell Endocrinol 2005; 242:10 - 5; http://dx.doi.org/10.1016/j.mce.2005.07.006; PMID: 16150534
  • Suvorov A, Bissonnette C, Takser L, Langlois MF. Does 2,2′,4,4′-tetrabromodiphenyl ether interact directly with thyroid receptor?. J Appl Toxicol 2011; 31:179 - 84; PMID: 20737425
  • Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MHA, Andersson PL, Legler J, Brouwer A. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci 2006; 92:157 - 73; http://dx.doi.org/10.1093/toxsci/kfj187; PMID: 16601080
  • Schriks M, Vrabie CM, Gutleb AC, Faassen EJ, Rietjens IM, Murk AJ. T-screen to quantify functional potentiating, antagonistic and thyroid hormone-like activities of poly halogenated aromatic hydrocarbons (PHAHs). Toxicol In Vitro 2006; 20:490 - 8; http://dx.doi.org/10.1016/j.tiv.2005.09.001; PMID: 16219445
  • Kitamura S, Shinohara S, Iwase E, Sugihara K, Uramaru N, Shigematsu H, et al. Affinity for thyroid hormone and estrogen receptors of hydroxylated polybrominated diphenyl ethers. J Health Sci 2008; 54:607 - 14; http://dx.doi.org/10.1248/jhs.54.607
  • Kojima H, Takeuchi S, Uramaru N, Sugihara K, Yoshida T, Kitamura S. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells. Environ Health Perspect 2009; 117:1210 - 8; http://dx.doi.org/10.1289/ehp.0900753; PMID: 19672399
  • Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J, Miyazaki W, Shimokawa N, Koibuchi N. Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced Purkinje cell dendrite arborization by polybrominated diphenyl ethers. Environ Health Perspect 2011; 119:168 - 75; http://dx.doi.org/10.1289/ehp.1002065; PMID: 20870570
  • Freitas J, Cano P, Craig-Veit C, Goodson ML, Furlow JD, Murk AJ. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol In Vitro 2011; 25:257 - 66; http://dx.doi.org/10.1016/j.tiv.2010.08.013; PMID: 20732405
  • Li F, Xie Q, Li X, Li N, Chi P, Chen J, Wang Z, Hao C. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: in vitro and in silico investigations. Environ Health Perspect 2010; 118:602 - 6; http://dx.doi.org/10.1289/ehp.0901457; PMID: 20439171
  • Ren XM, Guo LH, Gao Y, Zhang BT, Wan B. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination. Toxicol Appl Pharmacol 2013; 268:256 - 63; http://dx.doi.org/10.1016/j.taap.2013.01.026; PMID: 23402801
  • Blanco J, Mulero M, López M, Domingo JL, Sánchez DJ. BDE-99 deregulates BDNF, Bcl-2 and the mRNA expression of thyroid receptor isoforms in rat cerebellar granular neurons. Toxicology 2011; 290:305 - 11; http://dx.doi.org/10.1016/j.tox.2011.10.010; PMID: 22024335
  • Souza PCT, Puhl AC, Martínez L, Aparício R, Nascimento AS, Figueira ACM, Nguyen P, Webb P, Skaf MS, Polikarpov I. Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Mol Endocrinol 2014; 28:534 - 45; http://dx.doi.org/10.1210/me.2013-1359; PMID: 24552590
  • Chen L, Huang C, Hu C, Yu K, Yang L, Zhou B. Acute exposure to DE-71: effects on locomotor behavior and developmental neurotoxicity in zebrafish larvae. Environ Toxicol Chem 2012; 31:2338 - 44; http://dx.doi.org/10.1002/etc.1958; PMID: 22833361
  • Chen L, Yu K, Huang C, Yu L, Zhu B, Lam PKS, Lam JC, Zhou B. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae. Environ Sci Technol 2012; 46:9727 - 34; http://dx.doi.org/10.1021/es302119g; PMID: 22866812
  • Usenko CY, Robinson EM, Usenko S, Brooks BW, Bruce ED. PBDE developmental effects on embryonic zebrafish. Environ Toxicol Chem 2011; 30:1865 - 72; http://dx.doi.org/10.1002/etc.570; PMID: 21560146
  • Chen X, Huang C, Wang X, Chen J, Bai C, Chen Y, Chen X, Dong Q, Yang D. BDE-47 disrupts axonal growth and motor behavior in developing zebrafish. Aquat Toxicol 2012; 120-121:35 - 44; http://dx.doi.org/10.1016/j.aquatox.2012.04.014; PMID: 22609740
  • Chou CT, Hsiao YC, Ko FC, Cheng JO, Cheng YM, Chen TH. Chronic exposure of 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio). Aquat Toxicol 2010; 98:388 - 95; http://dx.doi.org/10.1016/j.aquatox.2010.03.012; PMID: 20416957
  • Lema SC, Schultz IR, Scholz NL, Incardona JP, Swanson P. Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE 47). Aquat Toxicol 2007; 82:296 - 307; http://dx.doi.org/10.1016/j.aquatox.2007.03.002; PMID: 17412433
  • Zhao J, Xu T, Yin DQ. Locomotor activity changes on zebrafish larvae with different 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) embryonic exposure modes. Chemosphere 2014; 94:53 - 61; http://dx.doi.org/10.1016/j.chemosphere.2013.09.010; PMID: 24080000
  • McClain V, Stapleton HM, Tilton F, Gallagher EP. BDE 49 and developmental toxicity in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:253 - 8; http://dx.doi.org/10.1016/j.cbpc.2011.09.004; PMID: 21951712
  • He J, Yang D, Wang C, Liu W, Liao J, Xu T, Bai C, Chen J, Lin K, Huang C, et al. Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring. Ecotoxicology 2011; 20:1813 - 22; http://dx.doi.org/10.1007/s10646-011-0720-3; PMID: 21695510
  • Desouza LA, Sathanoori M, Kapoor R, Rajadhyaksha N, Gonzalez LE, Kottmann AH, Tole S, Vaidya VA. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain. Endocrinology 2011; 152:1989 - 2000; http://dx.doi.org/10.1210/en.2010-1396; PMID: 21363934
  • Herbstman JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, Needham LL, Tang D, Niedzwiecki M, Wang RY, et al. Prenatal exposure to PBDEs and neurodevelopment. Environ Health Perspect 2010; 118:712 - 9; http://dx.doi.org/10.1289/ehp.0901340; PMID: 20056561
  • Branchi I, Alleva E, Costa LG. Effects of perinatal exposure to a polybrominated diphenyl ether (PBDE 99) on mouse neurobehavioural development. Neurotoxicology 2002; 23:375 - 84; http://dx.doi.org/10.1016/S0161-813X(02)00078-5; PMID: 12387364
  • Eriksson P, Jakobsson E, Fredriksson A. Brominated flame retardants: a novel class of developmental neurotoxicants in our environment?. Environ Health Perspect 2001; 109:903 - 8; http://dx.doi.org/10.1289/ehp.01109903; PMID: 11673118
  • Viberg H, Fredriksson A, Eriksson P. Neonatal exposure to the brominated flame retardant 2,2′,4,4′,5-pentabromodiphenyl ether causes altered susceptibility in the cholinergic transmitter system in the adult mouse. Toxicol Sci 2002; 67:104 - 7; http://dx.doi.org/10.1093/toxsci/67.1.104; PMID: 11961222
  • Kuriyama SN, Wanner A, Fidalgo-Neto AA, Talsness CE, Koerner W, Chahoud I. Developmental exposure to low-dose PBDE-99: tissue distribution and thyroid hormone levels. Toxicology 2007; 242:80 - 90; http://dx.doi.org/10.1016/j.tox.2007.09.011; PMID: 17964054
  • Rice DC, Reeve EA, Herlihy A, Zoeller RT, Thompson WD, Markowski VP. Developmental delays and locomotor activity in the C57BL6/J mouse following neonatal exposure to the fully-brominated PBDE, decabromodiphenyl ether. Neurotoxicol Teratol 2007; 29:511 - 20; http://dx.doi.org/10.1016/j.ntt.2007.03.061; PMID: 17482428
  • Li T, Wang W, Pan YW, Xu L, Xia Z. A hydroxylated metabolite of flame-retardant PBDE-47 decreases the survival, proliferation, and neuronal differentiation of primary cultured adult neural stem cells and interferes with signaling of ERK5 MAP kinase and neurotrophin 3. Toxicol Sci 2013; 134:111 - 24; http://dx.doi.org/10.1093/toxsci/kft083; PMID: 23564643
  • Dingemans MML, Heusinkveld HJ, Bergman A, van den Berg M, Westerink RHS. Bromination pattern of hydroxylated metabolites of BDE-47 affects their potency to release calcium from intracellular stores in PC12 cells. Environ Health Perspect 2010; 118:519 - 25; http://dx.doi.org/10.1289/ehp.0901339; PMID: 20368133
  • Dufault C, Poles G, Driscoll LL. Brief postnatal PBDE exposure alters learning and the cholinergic modulation of attention in rats. Toxicol Sci 2005; 88:172 - 80; http://dx.doi.org/10.1093/toxsci/kfi285; PMID: 16107551
  • Johansson N, Viberg H, Fredriksson A, Eriksson P. Neonatal exposure to deca-brominated diphenyl ether (PBDE 209) causes dose-response changes in spontaneous behaviour and cholinergic susceptibility in adult mice. Neurotoxicology 2008; 29:911 - 9; http://dx.doi.org/10.1016/j.neuro.2008.09.008; PMID: 18930763
  • Xing T, Chen L, Tao Y, Wang M, Chen J, Ruan DY. Effects of decabrominated diphenyl ether (PBDE 209) exposure at different developmental periods on synaptic plasticity in the dentate gyrus of adult rats In vivo. Toxicol Sci 2009; 110:401 - 10; http://dx.doi.org/10.1093/toxsci/kfp114; PMID: 19535737
  • Huang SC, Giordano G, Costa LG. Comparative cytotoxicity and intracellular accumulation of five polybrominated diphenyl ether congeners in mouse cerebellar granule neurons. Toxicol Sci 2010; 114:124 - 32; http://dx.doi.org/10.1093/toxsci/kfp296; PMID: 19969594
  • Tagliaferri S, Caglieri A, Goldoni M, Pinelli S, Alinovi R, Poli D, Pellacani C, Giordano G, Mutti A, Costa LG. Low concentrations of the brominated flame retardants BDE-47 and BDE-99 induce synergistic oxidative stress-mediated neurotoxicity in human neuroblastoma cells. Toxicol In Vitro 2010; 24:116 - 22; http://dx.doi.org/10.1016/j.tiv.2009.08.020; PMID: 19720130
  • Chen L, Hu C, Huang C, Wang Q, Wang X, Yang L, Zhou B. Alterations in retinoid status after long-term exposure to PBDEs in zebrafish (Danio rerio). Aquat Toxicol 2012; 120-121:11 - 8; http://dx.doi.org/10.1016/j.aquatox.2012.04.010; PMID: 22580571
  • Nyholm JR, Norman A, Norrgren L, Haglund P, Andersson PL. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio). Chemosphere 2008; 73:203 - 8; http://dx.doi.org/10.1016/j.chemosphere.2008.04.033; PMID: 18514256
  • van de Merwe JP, Chan AKY, Lei ENY, Yau MS, Lam MHW, Wu RSS. Bioaccumulation and maternal transfer of PBDE 47 in the marine medaka (Oryzias melastigma) following dietary exposure. Aquat Toxicol 2011; 103:199 - 204; http://dx.doi.org/10.1016/j.aquatox.2011.02.021; PMID: 21481818
  • Han XB, Lei ENY, Lam MHW, Wu RSS. A whole life cycle assessment on effects of waterborne PBDEs on gene expression profile along the brain-pituitary-gonad axis and in the liver of zebrafish. Mar Pollut Bull 2011; 63:160 - 5; http://dx.doi.org/10.1016/j.marpolbul.2011.04.001; PMID: 21549400
  • Han XB, Yuen KWY, Wu RSS. Polybrominated diphenyl ethers affect the reproduction and development, and alter the sex ratio of zebrafish (Danio rerio). Environ Pollut 2013; 182:120 - 6; http://dx.doi.org/10.1016/j.envpol.2013.06.045; PMID: 23906559
  • Schultz I, Brown KH, Nagler JJ. Effect of parental exposure to trenbolone and the brominated flame retardant BDE-47 on fertility in rainbow trout (Oncorhynchus mykiss). Mar Environ Res 2008; 66:47 - 9; http://dx.doi.org/10.1016/j.marenvres.2008.02.018; PMID: 18397801
  • Søfteland L, Petersen K, Stavrum AK, Wu T, Olsvik PA. Hepatic in vitro toxicity assessment of PBDE congeners BDE47, BDE153 and BDE154 in Atlantic salmon (Salmo salar L.). Aquat Toxicol 2011; 105:246 - 63; http://dx.doi.org/10.1016/j.aquatox.2011.03.012; PMID: 21767471
  • Cantón RF, Scholten DEA, Marsh G, de Jong PC, van den Berg M. Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs). Toxicol Appl Pharmacol 2008; 227:68 - 75; http://dx.doi.org/10.1016/j.taap.2007.09.025; PMID: 18022659
  • Cantón RF, Sanderson JT, Letcher RJ, Bergman A, van den Berg M. Inhibition and induction of aromatase (CYP19) activity by brominated flame retardants in H295R human adrenocortical carcinoma cells. Toxicol Sci 2005; 88:447 - 55; http://dx.doi.org/10.1093/toxsci/kfi325; PMID: 16177243
  • Cantón RF, Sanderson JT, Nijmeijer S, Bergman A, Letcher RJ, van den Berg M. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: a novel mechanism of action?. Toxicol Appl Pharmacol 2006; 216:274 - 81; http://dx.doi.org/10.1016/j.taap.2006.05.007; PMID: 16828825
  • Li X, Gao Y, Guo LH, Jiang G. Structure-dependent activities of hydroxylated polybrominated diphenyl ethers on human estrogen receptor. Toxicology 2013; 309:15 - 22; http://dx.doi.org/10.1016/j.tox.2013.04.001; PMID: 23603053
  • Mercado-Feliciano M, Bigsby RM. Hydroxylated metabolites of the polybrominated diphenyl ether mixture DE-71 are weak estrogen receptor-alpha ligands. Environ Health Perspect 2008; 116:1315 - 21; http://dx.doi.org/10.1289/ehp.11343; PMID: 18941571
  • Kuriyama SN, Talsness CE, Grote K, Chahoud I. Developmental exposure to low dose PBDE 99: effects on male fertility and neurobehavior in rat offspring. Environ Health Perspect 2005; 113:149 - 54; http://dx.doi.org/10.1289/ehp.7421; PMID: 15687051
  • Lilienthal H, Hack A, Roth-Härer A, Grande SW, Talsness CE. Effects of developmental exposure to 2,2, 4,4, 5-pentabromodiphenyl ether (PBDE-99) on sex steroids, sexual development, and sexually dimorphic behavior in rats. Environ Health Perspect 2006; 114:194 - 201; http://dx.doi.org/10.1289/ehp.8391; PMID: 16451854
  • Stoker TE, Cooper RL, Lambright CS, Wilson VS, Furr J, Gray LE. In vivo and in vitro anti-androgenic effects of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture. Toxicol Appl Pharmacol 2005; 207:78 - 88; http://dx.doi.org/10.1016/j.taap.2005.05.010; PMID: 16005038
  • Tseng LH, Lee CW, Pan MH, Tsai SS, Li MH, Chen JR, Lay JJ, Hsu PC. Postnatal exposure of the male mouse to 2,2′,3,3′,4,4′,5,5′,6,6′-decabrominated diphenyl ether: decreased epididymal sperm functions without alterations in DNA content and histology in testis. Toxicology 2006; 224:33 - 43; http://dx.doi.org/10.1016/j.tox.2006.04.003; PMID: 16713668
  • van der Ven LTM, van de Kuil T, Verhoef A, Leonards PEG, Slob W, Cantón RF, Germer S, Hamers T, Visser TJ, Litens S, et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of a purified technical pentabromodiphenyl ether (pentaBDE) mixture in Wistar rats. Toxicology 2008; 245:109 - 22; http://dx.doi.org/10.1016/j.tox.2007.12.016; PMID: 18243468
  • Meerts IA, Letcher RJ, Hoving S, Marsh G, Bergman A, Lemmen JG, van der Burg B, Brouwer A. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environ Health Perspect 2001; 109:399 - 407; http://dx.doi.org/10.1289/ehp.01109399; PMID: 11335189
  • Main KM, Kiviranta H, Virtanen HE, Sundqvist E, Tuomisto JT, Tuomisto J, Vartiainen T, Skakkebaek NE, Toppari J. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys. Environ Health Perspect 2007; 115:1519 - 26; PMID: 17938745
  • Chen A, Chung E, DeFranco EA, Pinney SM, Dietrich KN. Serum PBDEs and age at menarche in adolescent girls: analysis of the National Health and Nutrition Examination Survey 2003-2004. Environ Res 2011; 111:831 - 7; http://dx.doi.org/10.1016/j.envres.2011.05.016; PMID: 21663902
  • Meijer L, Martijn A, Melessen J, Brouwer A, Weiss J, de Jong FH, Sauer PJ. Influence of prenatal organohalogen levels on infant male sexual development: sex hormone levels, testes volume and penile length. Hum Reprod 2012; 27:867 - 72; http://dx.doi.org/10.1093/humrep/der426; PMID: 22215630
  • Akutsu K, Takatori S, Nozawa S, Yoshiike M, Nakazawa H, Hayakawa K, Makino T, Iwamoto T. Polybrominated diphenyl ethers in human serum and sperm quality. Bull Environ Contam Toxicol 2008; 80:345 - 50; http://dx.doi.org/10.1007/s00128-008-9370-4; PMID: 18320132
  • Krassas GE, Pontikides N, Deligianni V, Miras K. A prospective controlled study of the impact of hyperthyroidism on reproductive function in males. J Clin Endocrinol Metab 2002; 87:3667 - 71; http://dx.doi.org/10.1210/jcem.87.8.8714; PMID: 12161493
  • Cyr DG, Eales JG. Interrelationships between thyroidal and reproductive endocrine systems in fish. Rev Fish Biol Fish 1996; 6:165 - 200; http://dx.doi.org/10.1007/BF00182342
  • Habibi HR, Nelson ER, Allan ERO. New insights into thyroid hormone function and modulation of reproduction in goldfish. Gen Comp Endocrinol 2012; 175:19 - 26; http://dx.doi.org/10.1016/j.ygcen.2011.11.003; PMID: 22100124
  • Liu C, Zhang X, Deng J, Hecker M, Al-Khedhairy A, Giesy JP, Zhou B. Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish. Environ Sci Technol 2011; 45:769 - 75; http://dx.doi.org/10.1021/es102659p; PMID: 21158436
  • Morais RD, Nóbrega RH, Gómez-González NE, Schmidt R, Bogerd J, França LR, Schulz RW. Thyroid hormone stimulates the proliferation of Sertoli cells and single type A spermatogonia in adult zebrafish (Danio rerio) testis. Endocrinology 2013; 154:4365 - 76; http://dx.doi.org/10.1210/en.2013-1308; PMID: 24002037