2,854
Views
56
CrossRef citations to date
0
Altmetric
Research Paper

Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation

, , , , &
Pages 747-757 | Published online: 01 Jul 2012

References

  • Schultz RM. Regulation of zygotic gene activation in the mouse. Bioessays 1993; 15:531 - 8; http://dx.doi.org/10.1002/bies.950150806; PMID: 8135766
  • Hamatani T, Carter MG, Sharov AA, Ko MS. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 2004; 6:117 - 31; http://dx.doi.org/10.1016/S1534-5807(03)00373-3; PMID: 14723852
  • Barnes FL, First NL. Embryonic transcription in in vitro cultured bovine embryos. Mol Reprod Dev 1991; 29:117 - 23; http://dx.doi.org/10.1002/mrd.1080290205; PMID: 1878221
  • Wiekowski M, Miranda M, DePamphilis ML. Regulation of gene expression in preimplantation mouse embryos: effects of the zygotic clock and the first mitosis on promoter and enhancer activities. Dev Biol 1991; 147:403 - 14; http://dx.doi.org/10.1016/0012-1606(91)90298-H; PMID: 1916016
  • Majumder S, DePamphilis ML. A unique role for enhancers is revealed during early mouse development. Bioessays 1995; 17:879 - 89; http://dx.doi.org/10.1002/bies.950171010; PMID: 7487969
  • Beaujean N, Bouniol-Baly C, Monod C, Kissa K, Jullien D, Aulner N, et al. Induction of early transcription in one-cell mouse embryos by microinjection of the nonhistone chromosomal protein HMG-I. Dev Biol 2000; 221:337 - 54; http://dx.doi.org/10.1006/dbio.2000.9668; PMID: 10790330
  • Sonehara H, Nagata M, Aoki F. Roles of the first and second round of DNA replication in the regulation of zygotic gene activation in mice. J Reprod Dev 2008; 54:381 - 4; http://dx.doi.org/10.1262/jrd.20053; PMID: 18580041
  • Bouniol-Baly C, Nguyen E, Besombes D, Debey P. Dynamic organization of DNA replication in one-cell mouse embryos: relationship to transcriptional activation. Exp Cell Res 1997; 236:201 - 11; http://dx.doi.org/10.1006/excr.1997.3708; PMID: 9344600
  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251 - 60; http://dx.doi.org/10.1038/38444; PMID: 9305837
  • Kouzarides T. Chromatin modifications and their function. Cell 2007; 128:693 - 705; http://dx.doi.org/10.1016/j.cell.2007.02.005; PMID: 17320507
  • Banaszynski LA, Allis CD, Lewis PW. Histone variants in metazoan development. Dev Cell 2010; 19:662 - 74; http://dx.doi.org/10.1016/j.devcel.2010.10.014; PMID: 21074717
  • Iouzalen N, Moreau J, Méchali M. H2A.ZI, a new variant histone expressed during Xenopus early development exhibits several distinct features from the core histone H2A. Nucleic Acids Res 1996; 24:3947 - 52; http://dx.doi.org/10.1093/nar/24.20.3947; PMID: 8918796
  • Allis CD, Richman R, Gorovsky MA, Ziegler YS, Touchstone B, Bradley WA, et al. hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J Biol Chem 1986; 261:1941 - 8; PMID: 3944120
  • Thambirajah AA, Dryhurst D, Ishibashi T, Li A, Maffey AH, Ausió J. H2A.Z stabilizes chromatin in a way that is dependent on core histone acetylation. J Biol Chem 2006; 281:20036 - 44; http://dx.doi.org/10.1074/jbc.M601975200; PMID: 16707487
  • Babiarz JE, Halley JE, Rine J. Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A.Z in Saccharomyces cerevisiae. Genes Dev 2006; 20:700 - 10; http://dx.doi.org/10.1101/gad.1386306; PMID: 16543222
  • Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, Widom J, et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 2007; 5:e81; http://dx.doi.org/10.1371/journal.pbio.0050081; PMID: 17373856
  • Zofall M, Fischer T, Zhang K, Zhou M, Cui B, Veenstra TD, et al. Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 2009; 461:419 - 22; http://dx.doi.org/10.1038/nature08321; PMID: 19693008
  • Meneghini MD, Wu M, Madhani HD. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 2003; 112:725 - 36; http://dx.doi.org/10.1016/S0092-8674(03)00123-5; PMID: 12628191
  • Ren Q, Gorovsky MA. Histone H2A.Z acetylation modulates an essential charge patch. Mol Cell 2001; 7:1329 - 35; http://dx.doi.org/10.1016/S1097-2765(01)00269-6; PMID: 11430834
  • Pantazis P, Bonner WM. Quantitative determination of histone modification. H2A acetylation and phosphorylation. J Biol Chem 1981; 256:4669 - 75; PMID: 7217105
  • Zlatanova J, Thakar A. H2A.Z: view from the top. Structure 2008; 16:166 - 79; http://dx.doi.org/10.1016/j.str.2007.12.008; PMID: 18275809
  • Bruce K, Myers FA, Mantouvalou E, Lefevre P, Greaves I, Bonifer C, et al. The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res 2005; 33:5633 - 9; http://dx.doi.org/10.1093/nar/gki874; PMID: 16204459
  • Kim HS, Vanoosthuyse V, Fillingham J, Roguev A, Watt S, Kislinger T, et al. An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat Struct Mol Biol 2009; 16:1286 - 93; http://dx.doi.org/10.1038/nsmb.1688; PMID: 19915592
  • Valdes-Mora F, Song JZ, Statham AL, Strbenac D, Robinson MD, Nair SS, et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res 2011; 22:307 - 21;; PMID: 21788347
  • Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JR, Taylor H, et al. Histone variant H2A.Z is required for early mammalian development. Curr Biol 2001; 11:1183 - 7; http://dx.doi.org/10.1016/S0960-9822(01)00329-3; PMID: 11516949
  • Rangasamy D, Berven L, Ridgway P, Tremethick DJ. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J 2003; 22:1599 - 607; http://dx.doi.org/10.1093/emboj/cdg160; PMID: 12660166
  • Nashun B, Yukawa M, Liu H, Akiyama T, Aoki F. Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development 2010; 137:3785 - 94; http://dx.doi.org/10.1242/dev.051805; PMID: 20943707
  • Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 2004; 6:73 - 7; http://dx.doi.org/10.1038/ncb1076; PMID: 14661024
  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129:823 - 37; http://dx.doi.org/10.1016/j.cell.2007.05.009; PMID: 17512414
  • Phatnani HP, Greenleaf AL. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 2006; 20:2922 - 36; http://dx.doi.org/10.1101/gad.1477006; PMID: 17079683
  • Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 2012; 13:115 - 26; http://dx.doi.org/10.1038/nrm3274; PMID: 22266761
  • Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 2011; 30:249 - 62; http://dx.doi.org/10.1038/emboj.2010.318; PMID: 21131905
  • Santos F, Peters AH, Otte AP, Reik W, Dean W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 2005; 280:225 - 36; http://dx.doi.org/10.1016/j.ydbio.2005.01.025; PMID: 15766761
  • Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 2003; 13:1116 - 21; http://dx.doi.org/10.1016/S0960-9822(03)00419-6; PMID: 12842010
  • Daujat S, Weiss T, Mohn F, Lange UC, Ziegler-Birling C, Zeissler U, et al. H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol 2009; 16:777 - 81; http://dx.doi.org/10.1038/nsmb.1629; PMID: 19561610
  • Burton A, Torres-Padilla ME. Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 2010; 9:444 - 54; http://dx.doi.org/10.1093/bfgp/elq027; PMID: 21186177
  • Lepikhov K, Zakhartchenko V, Hao R, Yang F, Wrenzycki C, Niemann H, et al. Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 2008; 1:8; http://dx.doi.org/10.1186/1756-8935-1-8; PMID: 19014417
  • Pichugin A, Le Bourhis D, Adenot P, Lehmann G, Audouard C, Renard JP, et al. Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos. Reproduction 2010; 139:129 - 37; http://dx.doi.org/10.1530/REP-08-0435; PMID: 19778997
  • Ross PJ, Ragina NP, Rodriguez RM, Iager AE, Siripattarapravat K, Lopez-Corrales N, et al. Polycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation development. Reproduction 2008; 136:777 - 85; http://dx.doi.org/10.1530/REP-08-0045; PMID: 18784248
  • Lepikhov K, Walter J. Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 2004; 4:12; http://dx.doi.org/10.1186/1471-213X-4-12; PMID: 15383155
  • Maalouf WE, Alberio R, Campbell KH. Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos. Epigenetics 2008; 3:199 - 209; http://dx.doi.org/10.4161/epi.3.4.6497; PMID: 18698155
  • Wang LJ, Zhang H, Wang YS, Xu WB, Xiong XR, Li YY, et al. Scriptaid improves in vitro development and nuclear reprogramming of somatic cell nuclear transfer bovine embryos. Cell Reprogram 2011; 13:431 - 9; PMID: 21774687
  • Halley JE, Kaplan T, Wang AY, Kobor MS, Rine J. Roles for H2A.Z and its acetylation in GAL1 transcription and gene induction, but not GAL1-transcriptional memory. PLoS Biol 2010; 8:e1000401; http://dx.doi.org/10.1371/journal.pbio.1000401; PMID: 20582323
  • Liu H, Kim JM, Aoki F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 2004; 131:2269 - 80; http://dx.doi.org/10.1242/dev.01116; PMID: 15102709
  • Wang F, Kou Z, Zhang Y, Gao S. Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biol Reprod 2007; 77:1007 - 16; http://dx.doi.org/10.1095/biolreprod.107.063149; PMID: 17823087
  • Yeo S, Lee KK, Han YM, Kang YK. Methylation changes of lysine 9 of histone H3 during preimplantation mouse development. Mol Cells 2005; 20:423 - 8; PMID: 16404159
  • Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 2006; 50:455 - 61; http://dx.doi.org/10.1387/ijdb.052073mt; PMID: 16586346
  • Park JS, Jeong YS, Shin ST, Lee KK, Kang YK. Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev Dyn 2007; 236:2523 - 33; http://dx.doi.org/10.1002/dvdy.21278; PMID: 17676637
  • Ishibashi T, Dryhurst D, Rose KL, Shabanowitz J, Hunt DF, Ausió J. Acetylation of vertebrate H2A.Z and its effect on the structure of the nucleosome. Biochemistry 2009; 48:5007 - 17; http://dx.doi.org/10.1021/bi900196c; PMID: 19385636
  • Creyghton MP, Markoulaki S, Levine SS, Hanna J, Lodato MA, Sha K, et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 2008; 135:649 - 61; http://dx.doi.org/10.1016/j.cell.2008.09.056; PMID: 18992931
  • Li T, Vu TH, Ulaner GA, Littman E, Ling JQ, Chen HL, et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod 2005; 11:631 - 40; http://dx.doi.org/10.1093/molehr/gah230; PMID: 16219628
  • van der Heijden GW, van den Berg IM, Baart EB, Derijck AA, Martini E, de Boer P. Parental origin of chromatin in human monopronuclear zygotes revealed by asymmetric histone methylation patterns, differs between IVF and ICSI. Mol Reprod Dev 2009; 76:101 - 8; http://dx.doi.org/10.1002/mrd.20933; PMID: 18481364
  • Sarcinella E, Zuzarte PC, Lau PN, Draker R, Cheung P. Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 2007; 27:6457 - 68; http://dx.doi.org/10.1128/MCB.00241-07; PMID: 17636032
  • Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 2006; 281:559 - 68; http://dx.doi.org/10.1074/jbc.M509266200; PMID: 16267050
  • van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 2005; 122:1008 - 22; http://dx.doi.org/10.1016/j.mod.2005.04.009; PMID: 15922569
  • Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010; 12:853 - 62; http://dx.doi.org/10.1038/ncb2089; PMID: 20676102
  • Akiyama T, Suzuki O, Matsuda J, Aoki F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet 2011; 7:e1002279; http://dx.doi.org/10.1371/journal.pgen.1002279; PMID: 21998593
  • Ingouff M, Rademacher S, Holec S, Soljić L, Xin N, Readshaw A, et al. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol 2010; 20:2137 - 43; http://dx.doi.org/10.1016/j.cub.2010.11.012; PMID: 21093266
  • Hogan BL, Beddington R, Costantini F, Lacy E. Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press, 1994.
  • Heyman Y, Chesné P, Lebourhis D, Peynot N, Renard JP. Developmental ability of bovine embryos after nuclear transfer based on the nuclear source: in vivo versus in vitro. Theriogenology 1994; 42:695 - 702; http://dx.doi.org/10.1016/0093-691X(94)90386-W; PMID: 16727575
  • Revel F, Mermillod P, Peynot N, Renard JP, Heyman Y. Low developmental capacity of in vitro matured and fertilized oocytes from calves compared with that of cows. J Reprod Fertil 1995; 103:115 - 20; http://dx.doi.org/10.1530/jrf.0.1030115; PMID: 7707286