1,034
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

The TCF4/β-catenin pathway and chromatin structure cooperate to regulate D-glucuronyl C5-epimerase expression in breast cancer

, , , , , , , , , , & show all
Pages 930-939 | Published online: 18 Jul 2012

References

  • Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 2011; 3; http://dx.doi.org/10.1101/cshperspect.a004952; PMID: 21690215
  • Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 2011; 209:139 - 51; http://dx.doi.org/10.1530/JOE-10-0377; PMID: 21307119
  • Ori A, Wilkinson MC, Fernig DG. The heparanome and regulation of cell function: structures, functions and challenges. Front Biosci 2008; 13:4309 - 38; http://dx.doi.org/10.2741/3007; PMID: 18508513
  • Malavaki CJ, Theocharis AD, Lamari FN, Kanakis I, Tsegenidis T, Tzanakakis GN, et al. Heparan sulfate: biological significance, tools for biochemical analysis and structural characterization. Biomed Chromatogr 2011; 25:11 - 20; http://dx.doi.org/10.1002/bmc.1536; PMID: 21204109
  • Jia J, Maccarana M, Zhang X, Bespalov M, Lindahl U, Li JP. Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem 2009; 284:15942 - 50; http://dx.doi.org/10.1074/jbc.M809577200; PMID: 19336402
  • Catlow KR, Deakin JA, Wei Z, Delehedde M, Fernig DG, Gherardi E, et al. Interactions of hepatocyte growth factor/scatter factor with various glycosaminoglycans reveal an important interplay between the presence of iduronate and sulfate density. J Biol Chem 2008; 283:5235 - 48; http://dx.doi.org/10.1074/jbc.M706589200; PMID: 18156180
  • Chua CC, Rahimi N, Forsten-Williams K, Nugent MA. Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 2004; 94:316 - 23; http://dx.doi.org/10.1161/01.RES.0000112965.70691.AC; PMID: 14684627
  • Reijmers RM, Groen RW, Kuil A, Weijer K, Kimberley FC, Medema JP, et al. Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival. Blood 2011; 117:6162 - 71; http://dx.doi.org/10.1182/blood-2010-12-325522; PMID: 21471524
  • Reijmers RM, Vondenhoff MF, Roozendaal R, Kuil A, Li JP, Spaargaren M, et al. Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase. J Immunol 2010; 184:3656 - 64; http://dx.doi.org/10.4049/jimmunol.0902200; PMID: 20208005
  • Feyerabend TB, Li JP, Lindahl U, Rodewald HR. Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells. Nat Chem Biol 2006; 2:195 - 6; http://dx.doi.org/10.1038/nchembio777; PMID: 16532012
  • Ghiselli G, Farber SA. D-glucuronyl C5-epimerase acts in dorso-ventral axis formation in zebrafish. BMC Dev Biol 2005; 5:19; http://dx.doi.org/10.1186/1471-213X-5-19; PMID: 16156897
  • Bülow HE, Hobert O. Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 2004; 41:723 - 36; http://dx.doi.org/10.1016/S0896-6273(04)00084-4; PMID: 15003172
  • Li JP, Gong F, Hagner-McWhirter A, Forsberg E, Abrink M, Kisilevsky R, et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 2003; 278:28363 - 6; http://dx.doi.org/10.1074/jbc.C300219200; PMID: 12788935
  • Iozzo RV, Zoeller JJ, Nyström A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells 2009; 27:503 - 13; http://dx.doi.org/10.1007/s10059-009-0069-0; PMID: 19466598
  • Eshchenko TY, Rykova VI, Chernakov AE, Sidorov SV, Grigorieva EV. Expression of different proteoglycans in human breast tumors. Biochemistry (Mosc) 2007; 72:1016 - 20; http://dx.doi.org/10.1134/S0006297907090143; PMID: 17922662
  • Grigorieva E, Eshchenko T, Rykova VI, Chernakov A, Zabarovsky ER, Sidorov SV. Decreased expression of human D-glucuronyl C5-epimerase in breast cancer. Int J Cancer 2008; 122:1172 - 6; http://dx.doi.org/10.1002/ijc.23203; PMID: 17985344
  • Grigorieva EV, Prudnikova TY, Domanitskaya NV, Mostovich LA, Pavlova TV, Kashuba VI, et al. D-glucuronyl C5-epimerase suppresses small-cell lung cancer cell proliferation in vitro and tumour growth in vivo. Br J Cancer 2011; 105:74 - 82; http://dx.doi.org/10.1038/bjc.2011.170; PMID: 21654676
  • Prudnikova TY, Mostovich LA, Domanitskaya NV, Pavlova TV, Kashuba VI, Zabarovsky ER, et al. Antiproliferative effect of D-glucuronyl C5-epimerase in human breast cancer cells. Cancer Cell Int 2010; 10:27; http://dx.doi.org/10.1186/1475-2867-10-27; PMID: 20723247
  • Mostovich LA, Prudnikova TY, Domanitskaya NV, Verzhbitskaya NE, Kharchenko OV, Nepomnyaschikh GI, et al. Molecular mechanisms of anti-tumor effect of D-glucuronyl C5-epimerase in lung cancer experimental model in vivo.. Siber J Oncol 2010; 2:24 - 9
  • Ghiselli G, Agrawal A. The human D-glucuronyl C5-epimerase gene is transcriptionally activated through the beta-catenin-TCF4 pathway. Biochem J 2005; 390:493 - 9; http://dx.doi.org/10.1042/BJ20050152; PMID: 15853773
  • Lopes CC, Toma L, Pinhal MA, Porcionatto MA, Sogayar MC, Dietrich CP, et al. EJ-ras oncogene transfection of endothelial cells upregulates the expression of syndecan-4 and downregulates heparan sulfate sulfotransferases and epimerase. Biochimie 2006; 88:1493 - 504; http://dx.doi.org/10.1016/j.biochi.2006.04.009; PMID: 16793191
  • Small EM, Sutherland LB, Rajagopalan KN, Wang S, Olson EN. MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling. Circ Res 2010; 107:1336 - 44; http://dx.doi.org/10.1161/CIRCRESAHA.110.227926; PMID: 20947829
  • Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 2012; 22:50 - 5; http://dx.doi.org/10.1016/j.gde.2012.02.008; PMID: 22402447
  • Mazzio EA, Soliman KF. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 2012; 7:119 - 30; http://dx.doi.org/10.4161/epi.7.2.18764; PMID: 22395460
  • Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010; 70:27 - 56; http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2; PMID: 20920744
  • Ropero S, Setien F, Espada J, Fraga MF, Herranz M, Asp J, et al. Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells. Hum Mol Genet 2004; 13:2753 - 65; http://dx.doi.org/10.1093/hmg/ddh298; PMID: 15385438
  • Bui C, Ouzzine M, Talhaoui I, Sharp S, Prydz K, Coughtrie MW, et al. Epigenetics: methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells. FASEB J 2010; 24:436 - 50; http://dx.doi.org/10.1096/fj.09-136291; PMID: 19812376
  • Miyamoto K, Asada K, Fukutomi T, Okochi E, Yagi Y, Hasegawa T, et al. Methylation-associated silencing of heparan sulfate D-glucosaminyl 3-O-sulfotransferase-2 (3-OST-2) in human breast, colon, lung and pancreatic cancers. Oncogene 2003; 22:274 - 80; http://dx.doi.org/10.1038/sj.onc.1206146; PMID: 12527896
  • Chen Z, Fan JQ, Li J, Li QS, Yan Z, Jia XK, et al. Promoter hypermethylation correlates with the Hsulf-1 silencing in human breast and gastric cancer. Int J Cancer 2009; 124:739 - 44; http://dx.doi.org/10.1002/ijc.23960; PMID: 19006069
  • Xiang YY, Ladeda V, Filmus J. Glypican-3 expression is silenced in human breast cancer. Oncogene 2001; 20:7408 - 12; http://dx.doi.org/10.1038/sj.onc.1204925; PMID: 11704870
  • Kizuka Y, Kitazume S, Yoshida M, Taniguchi N. Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. J Biol Chem 2011; 286:31875 - 84; http://dx.doi.org/10.1074/jbc.M111.251173; PMID: 21771782
  • Zhang C, Li H, Zhou G, Zhang Q, Zhang T, Li J, et al. Transcriptional silencing of the TMS1/ASC tumour suppressor gene by an epigenetic mechanism in hepatocellular carcinoma cells. J Pathol 2007; 212:134 - 42; http://dx.doi.org/10.1002/path.2173; PMID: 17471463
  • Zhang C, Li H, Wang Y, Liu W, Zhang Q, Zhang T, et al. Epigenetic inactivation of the tumor suppressor gene RIZ1 in hepatocellular carcinoma involves both DNA methylation and histone modifications. J Hepatol 2010; 53:889 - 95; http://dx.doi.org/10.1016/j.jhep.2010.05.012; PMID: 20675009
  • Kim SK, Jang HR, Kim JH, Kim M, Noh SM, Song KS, et al. CpG methylation in exon 1 of transcription factor 4 increases with age in normal gastric mucosa and is associated with gene silencing in intestinal-type gastric cancers. Carcinogenesis 2008; 29:1623 - 31; http://dx.doi.org/10.1093/carcin/bgn110; PMID: 18635522
  • Foltz G, Yoon JG, Lee H, Ma L, Tian Q, Hood L, et al. Epigenetic regulation of wnt pathway antagonists in human glioblastoma multiforme. Genes Cancer 2010; 1:81 - 90; http://dx.doi.org/10.1177/1947601909356103; PMID: 21779426
  • Heinz S, Glass CK. Roles of lineage-determining transcription factors in establishing open chromatin: lessons from high-throughput studies. Curr Top Microbiol Immunol 2012; 356:1 - 15; http://dx.doi.org/10.1007/82_2011_142; PMID: 21744305
  • Ravindranath A, Yuen HF, Chan KK, Grills C, Fennell DA, Lappin TR, et al. Wnt-β-catenin-Tcf-4 signalling-modulated invasiveness is dependent on osteopontin expression in breast cancer. Br J Cancer 2011; 105:542 - 51; http://dx.doi.org/10.1038/bjc.2011.269; PMID: 21772333
  • Wöhrle S, Wallmen B, Hecht A. Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors. Mol Cell Biol 2007; 27:8164 - 77; http://dx.doi.org/10.1128/MCB.00555-07; PMID: 17923689
  • Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of Wnt signaling pathway activation. Int Rev Cell Mol Biol 2011; 291:21 - 71; http://dx.doi.org/10.1016/B978-0-12-386035-4.00002-1; PMID: 22017973
  • Sakane H, Yamamoto H, Matsumoto S, Sato A, Kikuchi A. Localization of glypican-4 in different membrane microdomains is involved in the regulation of Wnt signaling. J Cell Sci 2012; 125:449 - 60; http://dx.doi.org/10.1242/jcs.091876; PMID: 22302992
  • Cadwalader EL, Condic ML, Yost HJ. 2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly. Development 2012; 139:1296 - 305; http://dx.doi.org/10.1242/dev.078238; PMID: 22357927
  • Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med 2011; 17:330 - 9; http://dx.doi.org/10.1038/nm.2305; PMID: 21386836
  • Lustberg MB, Ramaswamy B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. Drug News Perspect 2009; 22:369 - 81; http://dx.doi.org/10.1358/dnp.2009.22.7.1405072; PMID: 19890494
  • Kristensen LS, Nielsen HM, Hansen LL. Epigenetics and cancer treatment. Eur J Pharmacol 2009; 625:131 - 42; http://dx.doi.org/10.1016/j.ejphar.2009.10.011; PMID: 19836388

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.