1,857
Views
65
CrossRef citations to date
0
Altmetric
Review

Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease

, &
Pages 1341-1348 | Published online: 15 Nov 2012

References

  • Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Phil Trans R Soc B 2012; In press
  • Barlow DP. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 2011; 45:379 - 403; http://dx.doi.org/10.1146/annurev-genet-110410-132459; PMID: 21942369
  • Labialle S, Cavaillé J. Do repeated arrays of regulatory small-RNA genes elicit genomic imprinting?: Concurrent emergence of large clusters of small non-coding RNAs and genomic imprinting at four evolutionarily distinct eutherian chromosomal loci. Bioessays 2011; 33:565 - 73; http://dx.doi.org/10.1002/bies.201100032; PMID: 21618561
  • Kiss T. Biogenesis of small nuclear RNPs. J Cell Sci 2004; 117:5949 - 51; http://dx.doi.org/10.1242/jcs.01487; PMID: 15564372
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136:215 - 33; http://dx.doi.org/10.1016/j.cell.2009.01.002; PMID: 19167326
  • Williamson CMBA, Thomas S, Beechey CV, Hancock J, Cattanach BM, Peters J. World Wide Web Site - Mouse Imprinting Data and References. MRC Harwell, Oxfordshire 2012:http://www.har.mrc.ac.uk/research/genomic_imprinting/.
  • da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 2008; 24:306 - 16; http://dx.doi.org/10.1016/j.tig.2008.03.011; PMID: 18471925
  • Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, et al. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet 2008; 40:237 - 42; http://dx.doi.org/10.1038/ng.2007.56; PMID: 18176563
  • Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 2003; 35:97 - 102; http://dx.doi.org/10.1038/ng1233; PMID: 12937418
  • Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP, et al. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 2003; 34:261 - 2; http://dx.doi.org/10.1038/ng1171; PMID: 12796779
  • Davis E, Caiment F, Tordoir X, Cavaille J, Ferguson-Smith A, Cockett N, et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Current biology: CB 2005; 15:743-9.
  • Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet 2008; 40:243 - 8; http://dx.doi.org/10.1038/ng.2007.51; PMID: 18176565
  • Cohen JE, Lee PR, Chen S, Li W, Fields RD. MicroRNA regulation of homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 2011; 108:11650 - 5; http://dx.doi.org/10.1073/pnas.1017576108; PMID: 21697510
  • Numakawa T, Richards M, Adachi N, Kishi S, Kunugi H, Hashido K. MicroRNA function and neurotrophin BDNF. Neurochem Int 2011; 59:551 - 8; http://dx.doi.org/10.1016/j.neuint.2011.06.009; PMID: 21723895
  • Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, et al. Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 2009; 28:697 - 710; http://dx.doi.org/10.1038/emboj.2009.10; PMID: 19197241
  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008; 455:1124 - 8; http://dx.doi.org/10.1038/nature07299; PMID: 18806776
  • Swarbrick A, Woods SL, Shaw A, Balakrishnan A, Phua Y, Nguyen A, et al. miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 2010; 16:1134 - 40; http://dx.doi.org/10.1038/nm.2227; PMID: 20871609
  • Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010; 465:175 - 81; http://dx.doi.org/10.1038/nature09017; PMID: 20418860
  • Liu L, Luo GZ, Yang W, Zhao X, Zheng Q, Lv Z, et al. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J Biol Chem 2010; 285:19483 - 90; http://dx.doi.org/10.1074/jbc.M110.131995; PMID: 20382743
  • Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 2011; 8:633 - 8; http://dx.doi.org/10.1016/j.stem.2011.05.001; PMID: 21620789
  • Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010; 120:1298 - 309; http://dx.doi.org/10.1172/JCI39566; PMID: 20237410
  • Toffanin S, Hoshida Y, Lachenmayer A, Villanueva A, Cabellos L, Minguez B, et al. MicroRNA-based classification of hepatocellular carcinoma and oncogenic role of miR-517a. Gastroenterology 2011; 140:1618-28 e16.
  • Luk JM, Burchard J, Zhang C, Liu AM, Wong KF, Shek FH, et al. DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. J Biol Chem 2011; 286:30706 - 13; http://dx.doi.org/10.1074/jbc.M111.229831; PMID: 21737452
  • Wang PR, Xu M, Toffanin S, Li Y, Llovet JM, Russell DW. Induction of hepatocellular carcinoma by in vivo gene targeting. Proc Natl Acad Sci U S A 2012; 109:11264 - 9; http://dx.doi.org/10.1073/pnas.1117032109; PMID: 22733778
  • Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 2008; 3:e2141; http://dx.doi.org/10.1371/journal.pone.0002141; PMID: 18478077
  • Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaillé J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 2004; 14:1741 - 8; http://dx.doi.org/10.1101/gr.2743304; PMID: 15310658
  • Tierling S, Dalbert S, Schoppenhorst S, Tsai CE, Oliger S, Ferguson-Smith AC, et al. High-resolution map and imprinting analysis of the Gtl2-Dnchc1 domain on mouse chromosome 12. Genomics 2006; 87:225 - 35; http://dx.doi.org/10.1016/j.ygeno.2005.09.018; PMID: 16309881
  • Cavaillé J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP. Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet 2002; 11:1527 - 38; http://dx.doi.org/10.1093/hmg/11.13.1527; PMID: 12045206
  • Valleron W, Laprevotte E, Gautier EF, Quelen C, Demur C, Delabesse E, et al. Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia 2012; 26:2052 - 60; http://dx.doi.org/10.1038/leu.2012.111; PMID: 22522792
  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006; 442:199 - 202; PMID: 16751776
  • Kernohan KD, Bérubé NG. Genetic and epigenetic dysregulation of imprinted genes in the brain. Epigenomics 2010; 2:743 - 63; http://dx.doi.org/10.2217/epi.10.61; PMID: 22122080
  • Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008; 40:719 - 21; http://dx.doi.org/10.1038/ng.158; PMID: 18500341
  • Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 2010; 18:1196 - 201; http://dx.doi.org/10.1038/ejhg.2010.102; PMID: 20588305
  • de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 2009; 18:3257 - 65; http://dx.doi.org/10.1093/hmg/ddp263; PMID: 19498035
  • Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 2006; 311:230 - 2; http://dx.doi.org/10.1126/science.1118265; PMID: 16357227
  • Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A 2000; 97:14311 - 6; http://dx.doi.org/10.1073/pnas.250426397; PMID: 11106375
  • Vitali P, Basyuk E, Le Meur E, Bertrand E, Muscatelli F, Cavaillé J, et al. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 2005; 169:745 - 53; http://dx.doi.org/10.1083/jcb.200411129; PMID: 15939761
  • Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, et al. SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 2008; 3:e1709.
  • Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T, et al. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet 2007; 3:e235; http://dx.doi.org/10.1371/journal.pgen.0030235; PMID: 18166085
  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37:766 - 70; http://dx.doi.org/10.1038/ng1590; PMID: 15965474
  • Bortolin-Cavaillé ML, Dance M, Weber M, Cavaillé J. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 2009; 37:3464 - 73; http://dx.doi.org/10.1093/nar/gkp205; PMID: 19339516
  • Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefèvre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010; 19:3566 - 82; http://dx.doi.org/10.1093/hmg/ddq272; PMID: 20610438
  • Bellemer C, Bortolin-Cavaillé ML, Schmidt U, Jensen SM, Kjems J, Bertrand E, et al. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes. J Cell Sci 2012; 125:2709 - 20; http://dx.doi.org/10.1242/jcs.100354; PMID: 22393237
  • Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation--identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol 2011; 89:185 - 91; http://dx.doi.org/10.1016/j.jri.2011.02.006; PMID: 21513988
  • Flor I, Bullerdiek J. The dark side of a success story: microRNAs of the C19MC cluster in human tumours. J Pathol 2012; 227:270 - 4; http://dx.doi.org/10.1002/path.4014; PMID: 22374805
  • Patel J, Landers K, Mortimer RH, Richard K. Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta 2010; 31:951 - 7; http://dx.doi.org/10.1016/j.placenta.2010.08.008; PMID: 20869770
  • Port M, Glaesener S, Ruf C, Riecke A, Bokemeyer C, Meineke V, et al. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines. Mol Cancer 2011; 10:52; http://dx.doi.org/10.1186/1476-4598-10-52; PMID: 21575166
  • O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res 2010; 12:201; http://dx.doi.org/10.1186/bcr2484; PMID: 20346098
  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10:202 - 10; http://dx.doi.org/10.1038/ncb1681; PMID: 18193036
  • Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C, et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 2009; 16:533 - 46; http://dx.doi.org/10.1016/j.ccr.2009.10.025; PMID: 19962671
  • Rippe V, Dittberner L, Lorenz VN, Drieschner N, Nimzyk R, Sendt W, et al. The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 2010; 5:e9485; http://dx.doi.org/10.1371/journal.pone.0009485; PMID: 20209130
  • Tsai KW, Kao HW, Chen HC, Chen SJ, Lin WC. Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells. Epigenetics 2009; 4:587 - 92; http://dx.doi.org/10.4161/epi.4.8.10230; PMID: 19923923
  • Lim DH, Maher ER. Human imprinting syndromes. Epigenomics 2009; 1:347 - 69; http://dx.doi.org/10.2217/epi.09.24; PMID: 22122706
  • Smits G, Mungall AJ, Griffiths-Jones S, Smith P, Beury D, Matthews L, et al, SAVOIR Consortium. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat Genet 2008; 40:971 - 6; http://dx.doi.org/10.1038/ng.168; PMID: 18587395
  • Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 2012; 14:659 - 65; http://dx.doi.org/10.1038/ncb2521; PMID: 22684254
  • Dudek KA, Lafont JE, Martinez-Sanchez A, Murphy CL. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem 2010; 285:24381 - 7; http://dx.doi.org/10.1074/jbc.M110.111328; PMID: 20529846
  • Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31:350 - 8; http://dx.doi.org/10.1093/carcin/bgp181; PMID: 19926638
  • Patterson EE, Holloway AK, Weng J, Fojo T, Kebebew E. MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy. Cancer 2011; 117:1630 - 9; http://dx.doi.org/10.1002/cncr.25724; PMID: 21472710
  • Veronese A, Lupini L, Consiglio J, Visone R, Ferracin M, Fornari F, et al. Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res 2010; 70:3140 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-09-4456; PMID: 20388800
  • Kaneko-Ishino T, Kuroiwa Y, Miyoshi N, Kohda T, Suzuki R, Yokoyama M, et al. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet 1995; 11:52 - 9; http://dx.doi.org/10.1038/ng0995-52; PMID: 7550314
  • Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 1998; 20:163 - 9; http://dx.doi.org/10.1038/2464; PMID: 9771709
  • Eggermann T, Spengler S, Begemann M, Binder G, Buiting K, Albrecht B, et al. Deletion of the paternal allele of the imprinted MEST/PEG1 region in a patient with Silver-Russell syndrome features. Clin Genet 2012; 81:298 - 300; http://dx.doi.org/10.1111/j.1399-0004.2011.01719.x; PMID: 22211632
  • Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451:147 - 52; http://dx.doi.org/10.1038/nature06487; PMID: 18185580
  • Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A, et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 2011; 25:226 - 31; http://dx.doi.org/10.1101/gad.1974211; PMID: 21289068
  • Heyn H, Engelmann M, Schreek S, Ahrens P, Lehmann U, Kreipe H, et al. MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int J Cancer 2011; 129:2797 - 806; http://dx.doi.org/10.1002/ijc.25962; PMID: 21618216
  • Kelsey G. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus. Am J Med Genet C Semin Med Genet 2010; 154C:377 - 86; http://dx.doi.org/10.1002/ajmg.c.30271; PMID: 20803660
  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129:1401 - 14; http://dx.doi.org/10.1016/j.cell.2007.04.040; PMID: 17604727
  • Robson JE, Eaton SA, Underhill P, Williams D, Peters J. MicroRNAs 296 and 298 are imprinted and part of the GNAS/Gnas cluster and miR-296 targets IKBKE and Tmed9. RNA 2012; 18:135 - 44; http://dx.doi.org/10.1261/rna.029561.111; PMID: 22114321
  • Yoon AR, Gao R, Kaul Z, Choi IK, Ryu J, Noble JR, et al. MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3′ untranslated region. Nucleic Acids Res 2011; 39:8078 - 91; http://dx.doi.org/10.1093/nar/gkr492; PMID: 21724611
  • Würdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 2008; 14:382 - 93; http://dx.doi.org/10.1016/j.ccr.2008.10.005; PMID: 18977327
  • Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 2009; 284:1971 - 81; http://dx.doi.org/10.1074/jbc.M807530200; PMID: 18986979
  • Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 2011; 332:848 - 52; http://dx.doi.org/10.1126/science.1203919; PMID: 21566194
  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 2008; 22:908 - 17; http://dx.doi.org/10.1101/gad.1640708; PMID: 18381894
  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008; 453:539 - 43; http://dx.doi.org/10.1038/nature06908; PMID: 18404146
  • Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 2008; 3:e1738.
  • Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 2007; 89:687 - 96; http://dx.doi.org/10.1016/j.ygeno.2007.01.004; PMID: 17418524
  • Zacharek SJ, Fillmore CM, Lau AN, Gludish DW, Chou A, Ho JW, et al. Lung stem cell self-renewal relies on BMI1-dependent control of expression at imprinted loci. Cell Stem Cell 2011; 9:272 - 81; http://dx.doi.org/10.1016/j.stem.2011.07.007; PMID: 21885022
  • Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 2006; 11:711 - 22; http://dx.doi.org/10.1016/j.devcel.2006.09.003; PMID: 17084362
  • Wang Q, Chow J, Hong J, Smith AF, Moreno C, Seaby P, et al. Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs. BMC Genomics 2011; 12:204; http://dx.doi.org/10.1186/1471-2164-12-204; PMID: 21510876
  • Cowley M, Oakey RJ. Retrotransposition and genomic imprinting. Brief Funct Genomics 2010; 9:340 - 6; http://dx.doi.org/10.1093/bfgp/elq015; PMID: 20591835
  • Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 2006; 38:101 - 6; http://dx.doi.org/10.1038/ng1699; PMID: 16341224