3,049
Views
44
CrossRef citations to date
0
Altmetric
Review

Epigenetic pathways and glioblastoma treatment

, , , , , , & show all
Pages 785-795 | Received 08 May 2013, Accepted 18 Jun 2013, Published online: 27 Jun 2013

References

  • Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001; 95:190 - 8; http://dx.doi.org/10.3171/jns.2001.95.2.0190; PMID: 11780887
  • Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012; 149:36 - 47; http://dx.doi.org/10.1016/j.cell.2012.03.009; PMID: 22464322
  • Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 2011; 146:209 - 21; http://dx.doi.org/10.1016/j.cell.2011.06.014; PMID: 21737130
  • Koso H, Takeda H, Yew CC, Ward JM, Nariai N, Ueno K, et al. Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells. Proc Natl Acad Sci U S A 2012; 109:E2998 - 3007; http://dx.doi.org/10.1073/pnas.1215899109; PMID: 23045694
  • Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012; 338:1080 - 4; http://dx.doi.org/10.1126/science.1226929; PMID: 23087000
  • Hambardzumyan D, Cheng YK, Haeno H, Holland EC, Michor F. The probable cell of origin of NF1- and PDGF-driven glioblastomas. PLoS One 2011; 6:e24454; http://dx.doi.org/10.1371/journal.pone.0024454; PMID: 21931722
  • Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488:522 - 6; http://dx.doi.org/10.1038/nature11287; PMID: 22854781
  • Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature 2012; 488:527 - 30; http://dx.doi.org/10.1038/nature11344; PMID: 22854777
  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455:1061 - 8; http://dx.doi.org/10.1038/nature07385; PMID: 18772890
  • Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 2012; 337:1231 - 5; http://dx.doi.org/10.1126/science.1220834; PMID: 22837387
  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321:1807 - 12; http://dx.doi.org/10.1126/science.1164382; PMID: 18772396
  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360:765 - 73; http://dx.doi.org/10.1056/NEJMoa0808710; PMID: 19228619
  • Pe’er D, Hacohen N. Principles and strategies for developing network models in cancer. Cell 2011; 144:864 - 73; http://dx.doi.org/10.1016/j.cell.2011.03.001; PMID: 21414479
  • Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 2010; 70:277 - 308; http://dx.doi.org/10.1016/B978-0-12-380866-0.60010-1; PMID: 20920752
  • Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482:226 - 31; http://dx.doi.org/10.1038/nature10833; PMID: 22286061
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646 - 74; http://dx.doi.org/10.1016/j.cell.2011.02.013; PMID: 21376230
  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al, Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17:98 - 110; http://dx.doi.org/10.1016/j.ccr.2009.12.020; PMID: 20129251
  • Riddick G, Fine HA. Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 2011; 7:439 - 50; http://dx.doi.org/10.1038/nrneurol.2011.100; PMID: 21727940
  • Natsume A, Kondo Y, Ito M, Motomura K, Wakabayashi T, Yoshida J. Epigenetic aberrations and therapeutic implications in gliomas. Cancer Sci 2010; 101:1331 - 6; http://dx.doi.org/10.1111/j.1349-7006.2010.01545.x; PMID: 20384628
  • Kreth S, Thon N, Kreth FW. Epigenetics in human gliomas. Cancer Lett 2012; In press; http://dx.doi.org/10.1016/j.canlet.2012.04.008; PMID: 22531315
  • Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150:12 - 27; http://dx.doi.org/10.1016/j.cell.2012.06.013; PMID: 22770212
  • Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22:425 - 37; http://dx.doi.org/10.1016/j.ccr.2012.08.024; PMID: 23079654
  • Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65:6029 - 33; http://dx.doi.org/10.1158/0008-5472.CAN-05-0137; PMID: 16024602
  • Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005; 334:1351 - 8; http://dx.doi.org/10.1016/j.bbrc.2005.07.030; PMID: 16039986
  • Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human glioma growth is controlled by microRNA-10b. Cancer Res 2011; 71:3563 - 72; http://dx.doi.org/10.1158/0008-5472.CAN-10-3568; PMID: 21471404
  • Guessous F, Alvarado-Velez M, Marcinkiewicz L, Zhang Y, Kim J, Heister S, et al. Oncogenic effects of miR-10b in glioblastoma stem cells. J Neurooncol 2013; 112:153 - 63; http://dx.doi.org/10.1007/s11060-013-1047-0; PMID: 23307328
  • Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147:344 - 57; http://dx.doi.org/10.1016/j.cell.2011.09.029; PMID: 22000013
  • Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 2011; 147:370 - 81; http://dx.doi.org/10.1016/j.cell.2011.09.041; PMID: 22000015
  • Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011; 147:382 - 95; http://dx.doi.org/10.1016/j.cell.2011.09.032; PMID: 22000016
  • Fang L, Du WW, Yang X, Chen K, Ghanekar A, Levy G, et al. Versican 3′-untranslated region (3′-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. FASEB J 2013; 27:907 - 19; http://dx.doi.org/10.1096/fj.12-220905; PMID: 23180826
  • Sarver AL, Subramanian S. Competing endogenous RNA database. Bioinformation 2012; 8:731 - 3; http://dx.doi.org/10.6026/97320630008731; PMID: 23055620
  • Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010; 142:409 - 19; http://dx.doi.org/10.1016/j.cell.2010.06.040; PMID: 20673990
  • Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 2011; 145:622 - 34; http://dx.doi.org/10.1016/j.cell.2011.03.042; PMID: 21549415
  • Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011; 29:742 - 9; http://dx.doi.org/10.1038/nbt.1914; PMID: 21804560
  • Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011; 43:621 - 9; http://dx.doi.org/10.1038/ng.848; PMID: 21642992
  • Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 2008; 14:723 - 30; http://dx.doi.org/10.1038/nm1784; PMID: 18587408
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10:155 - 9; http://dx.doi.org/10.1038/nrg2521; PMID: 19188922
  • Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 2012; 113:1868 - 74; http://dx.doi.org/10.1002/jcb.24055; PMID: 22234798
  • Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, et al. LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol 2012; 40:2004 - 12; PMID: 22446686
  • Jalali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 2013; 8:e53823; http://dx.doi.org/10.1371/journal.pone.0053823; PMID: 23405074
  • Katsushima K, Shinjo K, Natsume A, Ohka F, Fujii M, Osada H, et al. Contribution of microRNA-1275 to Claudin11 protein suppression via a polycomb-mediated silencing mechanism in human glioma stem-like cells. J Biol Chem 2012; 287:27396 - 406; http://dx.doi.org/10.1074/jbc.M112.359109; PMID: 22736761
  • Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010; 38:662 - 74; http://dx.doi.org/10.1016/j.molcel.2010.03.021; PMID: 20541999
  • Suvà ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res 2009; 69:9211 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-09-1622; PMID: 19934320
  • Orzan F, Pellegatta S, Poliani PL, Pisati F, Caldera V, Menghi F, et al. Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol Appl Neurobiol 2011; 37:381 - 94; http://dx.doi.org/10.1111/j.1365-2990.2010.01132.x; PMID: 20946108
  • Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12:599 - 612; http://dx.doi.org/10.1038/nrc3343; PMID: 22898539
  • Lee JM, Lee JS, Kim H, Kim K, Park H, Kim JY, et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 2012; 48:572 - 86; http://dx.doi.org/10.1016/j.molcel.2012.09.004; PMID: 23063525
  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329:689 - 93; http://dx.doi.org/10.1126/science.1192002; PMID: 20616235
  • Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA, et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 2010; 24:2615 - 20; http://dx.doi.org/10.1101/gad.1983810; PMID: 21123648
  • Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011; 71:6320 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-11-1021; PMID: 21862635
  • Yang F, Zhang L, Huo XS, Yuan JH, Xu D, Yuan SX, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology 2011; 54:1679 - 89; http://dx.doi.org/10.1002/hep.24563; PMID: 21769904
  • McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492:108 - 12; http://dx.doi.org/10.1038/nature11606; PMID: 23051747
  • Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012; 8:890 - 6; PMID: 23023262
  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322:1695 - 9; http://dx.doi.org/10.1126/science.1165395; PMID: 19008416
  • Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, et al. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 2010; 1:710 - 20; PMID: 21321380
  • Carén H, Pollard SM, Beck S. The good, the bad and the ugly: Epigenetic mechanisms in glioblastoma. Mol Aspects Med 2013; 34:849 - 62; http://dx.doi.org/10.1016/j.mam.2012.06.007; PMID: 22771539
  • Linnet K, Ejsing TB. A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 2008; 18:157 - 69; http://dx.doi.org/10.1016/j.euroneuro.2007.06.003; PMID: 17683917
  • Fronza R, Tramonti M, Atchley WR, Nardini C. Brain cancer prognosis: independent validation of a clinical bioinformatics approach. J Clin Bioinforma 2012; 2:2; http://dx.doi.org/10.1186/2043-9113-2-2; PMID: 22297051
  • Wuchty S, Arjona D, Li A, Kotliarov Y, Walling J, Ahn S, et al. Prediction of Associations between microRNAs and Gene Expression in Glioma Biology. PLoS One 2011; 6:e14681; http://dx.doi.org/10.1371/journal.pone.0014681; PMID: 21358821
  • Kunkle B, Yoo C, Roy D. Discovering gene-environment interactions in Glioblastoma through a comprehensive data integration bioinformatics method. Neurotoxicology 2013; 35:1 - 14; http://dx.doi.org/10.1016/j.neuro.2012.11.001; PMID: 23261424
  • Jobe EM, McQuate AL, Zhao X. Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Front Neurosci 2012; 6:59; http://dx.doi.org/10.3389/fnins.2012.00059; PMID: 22586361
  • Sima C, Hua J, Jung S. Inference of gene regulatory networks using time-series data: a survey. Curr Genomics 2009; 10:416 - 29; http://dx.doi.org/10.2174/138920209789177610; PMID: 20190956
  • Allen L. An Introduction to Stochastic Processes with Applications to Biology. 2nd Ed CRC Press/Chapman & Hall, Boca Raton, Fl 2010.
  • Ernst J, Nau GJ, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics 2005; 21:Suppl 1 i159 - 68; http://dx.doi.org/10.1093/bioinformatics/bti1022; PMID: 15961453
  • Genolini C, Falissard B. KmL: a package to cluster longitudinal data. Comput Methods Programs Biomed 2011; 104:e112 - 21; http://dx.doi.org/10.1016/j.cmpb.2011.05.008; PMID: 21708413
  • Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol 2000; 7:601 - 20; http://dx.doi.org/10.1089/106652700750050961; PMID: 11108481
  • Bilmes J. Dynamic Graphic Models. IEEE Signal Process Mag 2010; 34:29 - 42
  • Dobra A, Hans C, Jones B, Nevins JR, Yao G, West M. Sparse graphical models for exploring gene expression data. J Multivariate Anal 2004; 90:196 - 212; http://dx.doi.org/10.1016/j.jmva.2004.02.009
  • J. M. Bernardo JOB. A. P. Dawid and A. F. M. Smith (eds). Bayesian Statistics Oxford: Oxford University Press 1999; 6.
  • Futschik ME, Herzel H. Are we overestimating the number of cell-cycling genes? The impact of background models on time-series analysis. Bioinformatics 2008; 24:1063 - 9; http://dx.doi.org/10.1093/bioinformatics/btn072; PMID: 18310054
  • West PA. Time Series: Modeling, Computation, and Inference Chapman & Hall/CRC Texts in Statistical Science) 2010.
  • Lim WA, Lee CM, Tang C. Design principles of regulatory networks: searching for the molecular algorithms of the cell. Mol Cell 2013; 49:202 - 12; http://dx.doi.org/10.1016/j.molcel.2012.12.020; PMID: 23352241
  • Ioannidis JP. Why most published research findings are false. PLoS Med 2005; 2:e124; http://dx.doi.org/10.1371/journal.pmed.0020124; PMID: 16060722
  • Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, et al. Repeatability of published microarray gene expression analyses. Nat Genet 2009; 41:149 - 55; http://dx.doi.org/10.1038/ng.295; PMID: 19174838