1,655
Views
42
CrossRef citations to date
0
Altmetric
Point of View

The role of MyoD1 and histone modifications in the activation of muscle enhancers

&
Pages 778-784 | Received 15 May 2013, Accepted 18 Jun 2013, Published online: 27 Jun 2013

References

  • Ong CT, Corces VG. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 2011; 12:283 - 93; http://dx.doi.org/10.1038/nrg2957; PMID: 21358745
  • Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell 2011; 144:327 - 39; http://dx.doi.org/10.1016/j.cell.2011.01.024; PMID: 21295696
  • Spitz F, Furlong EE. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 2012; 13:613 - 26; http://dx.doi.org/10.1038/nrg3207; PMID: 22868264
  • Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why?. Mol Cell 2013; 49:825 - 37; http://dx.doi.org/10.1016/j.molcel.2013.01.038; PMID: 23473601
  • Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009; 459:108 - 12; http://dx.doi.org/10.1038/nature07829; PMID: 19295514
  • Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009; 457:854 - 8; http://dx.doi.org/10.1038/nature07730; PMID: 19212405
  • Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W, et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 2009; 4:80 - 93; http://dx.doi.org/10.1016/j.stem.2008.11.011; PMID: 19128795
  • Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 2010; 107:21931 - 6; http://dx.doi.org/10.1073/pnas.1016071107; PMID: 21106759
  • Blackwood EM, Kadonaga JT. Going the distance: a current view of enhancer action. Science 1998; 281:60 - 3; http://dx.doi.org/10.1126/science.281.5373.60; PMID: 9679020
  • Chepelev I, Wei G, Wangsa D, Tang Q, Zhao K. Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell Res 2012; 22:490 - 503; http://dx.doi.org/10.1038/cr.2012.15; PMID: 22270183
  • Akhtar-Zaidi B, Cowper-Sal-lari R, Corradin O, Saiakhova A, Bartels CF, Balasubramanian D, et al. Epigenomic enhancer profiling defines a signature of colon cancer. Science 2012; 336:736 - 9; http://dx.doi.org/10.1126/science.1217277; PMID: 22499810
  • Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 2005; 434:857 - 63; http://dx.doi.org/10.1038/nature03467; PMID: 15829955
  • Kleinjan DA, van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 2005; 76:8 - 32; http://dx.doi.org/10.1086/426833; PMID: 15549674
  • Visel A, Rubin EM, Pennacchio LA. Genomic views of distant-acting enhancers. Nature 2009; 461:199 - 205; http://dx.doi.org/10.1038/nature08451; PMID: 19741700
  • Noonan JP, McCallion AS. Genomics of long-range regulatory elements. Annu Rev Genomics Hum Genet 2010; 11:1 - 23; http://dx.doi.org/10.1146/annurev-genom-082509-141651; PMID: 20438361
  • van den Boogaard M, Wong LY, Tessadori F, Bakker ML, Dreizehnter LK, Wakker V, et al. Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J Clin Invest 2012; 122:2519 - 30; http://dx.doi.org/10.1172/JCI62613; PMID: 22706305
  • Visser M, Kayser M, Palstra RJ. HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter. Genome Res 2012; 22:446 - 55; http://dx.doi.org/10.1101/gr.128652.111; PMID: 22234890
  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007; 39:311 - 8; http://dx.doi.org/10.1038/ng1966; PMID: 17277777
  • Zentner GE, Tesar PJ, Scacheri PC. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res 2011; 21:1273 - 83; http://dx.doi.org/10.1101/gr.122382.111; PMID: 21632746
  • Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 2010; 465:182 - 7; http://dx.doi.org/10.1038/nature09033; PMID: 20393465
  • De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 2010; 8:e1000384; http://dx.doi.org/10.1371/journal.pbio.1000384; PMID: 20485488
  • Visel A, Taher L, Girgis H, May D, Golonzhka O, Hoch RV, et al. A high-resolution enhancer atlas of the developing telencephalon. Cell 2013; 152:895 - 908; http://dx.doi.org/10.1016/j.cell.2012.12.041; PMID: 23375746
  • Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 2010; 32:317 - 28; http://dx.doi.org/10.1016/j.immuni.2010.02.008; PMID: 20206554
  • May D, Blow MJ, Kaplan T, McCulley DJ, Jensen BC, Akiyama JA, et al. Large-scale discovery of enhancers from human heart tissue. Nat Genet 2012; 44:89 - 93; http://dx.doi.org/10.1038/ng.1006; PMID: 22138689
  • Narlikar L, Sakabe NJ, Blanski AA, Arimura FE, Westlund JM, Nobrega MA, et al. Genome-wide discovery of human heart enhancers. Genome Res 2010; 20:381 - 92; http://dx.doi.org/10.1101/gr.098657.109; PMID: 20075146
  • Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010; 143:156 - 69; http://dx.doi.org/10.1016/j.cell.2010.09.006; PMID: 20887899
  • Xu J, Watts JA, Pope SD, Gadue P, Kamps M, Plath K, et al. Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev 2009; 23:2824 - 38; http://dx.doi.org/10.1101/gad.1861209; PMID: 20008934
  • Vahedi G, Takahashi H, Nakayamada S, Sun HW, Sartorelli V, Kanno Y, et al. STATs shape the active enhancer landscape of T cell populations. Cell 2012; 151:981 - 93; http://dx.doi.org/10.1016/j.cell.2012.09.044; PMID: 23178119
  • Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, et al. Latent enhancers activated by stimulation in differentiated cells. Cell 2013; 152:157 - 71; http://dx.doi.org/10.1016/j.cell.2012.12.018; PMID: 23332752
  • Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 2011; 470:279 - 83; http://dx.doi.org/10.1038/nature09692; PMID: 21160473
  • Bogdanovic O, Fernandez-Miñán A, Tena JJ, de la Calle-Mustienes E, Hidalgo C, van Kruysbergen I, et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res 2012; 22:2043 - 53; http://dx.doi.org/10.1101/gr.134833.111; PMID: 22593555
  • Asp P, Blum R, Vethantham V, Parisi F, Micsinai M, Cheng J, et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A 2011; 108:E149 - 58; http://dx.doi.org/10.1073/pnas.1102223108; PMID: 21551099
  • Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011; 25:2227 - 41; http://dx.doi.org/10.1101/gad.176826.111; PMID: 22056668
  • Bergsland M, Ramsköld D, Zaouter C, Klum S, Sandberg R, Muhr J. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 2011; 25:2453 - 64; http://dx.doi.org/10.1101/gad.176008.111; PMID: 22085726
  • Tapscott SJ. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 2005; 132:2685 - 95; http://dx.doi.org/10.1242/dev.01874; PMID: 15930108
  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 1993; 75:1351 - 9; http://dx.doi.org/10.1016/0092-8674(93)90621-V; PMID: 8269513
  • Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51:987 - 1000; http://dx.doi.org/10.1016/0092-8674(87)90585-X; PMID: 3690668
  • Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A 1989; 86:5434 - 8; http://dx.doi.org/10.1073/pnas.86.14.5434; PMID: 2748593
  • Lassar AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, et al. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 1991; 66:305 - 15; http://dx.doi.org/10.1016/0092-8674(91)90620-E; PMID: 1649701
  • Bergstrom DA, Penn BH, Strand A, Perry RL, Rudnicki MA, Tapscott SJ. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell 2002; 9:587 - 600; http://dx.doi.org/10.1016/S1097-2765(02)00481-1; PMID: 11931766
  • Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 1989; 58:537 - 44; http://dx.doi.org/10.1016/0092-8674(89)90434-0; PMID: 2503252
  • Blackwell TK, Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 1990; 250:1104 - 10; http://dx.doi.org/10.1126/science.2174572; PMID: 2174572
  • Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD. An initial blueprint for myogenic differentiation. Genes Dev 2005; 19:553 - 69; http://dx.doi.org/10.1101/gad.1281105; PMID: 15706034
  • Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 2010; 18:662 - 74; http://dx.doi.org/10.1016/j.devcel.2010.02.014; PMID: 20412780
  • Davis RL, Weintraub H. Acquisition of myogenic specificity by replacement of three amino acid residues from MyoD into E12. Science 1992; 256:1027 - 30; http://dx.doi.org/10.1126/science.1317057; PMID: 1317057
  • Bengal E, Flores O, Rangarajan PN, Chen A, Weintraub H, Verma IM. Positive control mutations in the MyoD basic region fail to show cooperative DNA binding and transcriptional activation in vitro. Proc Natl Acad Sci U S A 1994; 91:6221 - 5; http://dx.doi.org/10.1073/pnas.91.13.6221; PMID: 8016142
  • Dilworth FJ, Seaver KJ, Fishburn AL, Htet SL, Tapscott SJ. In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proc Natl Acad Sci U S A 2004; 101:11593 - 8; http://dx.doi.org/10.1073/pnas.0404192101; PMID: 15289617
  • Yee SP, Rigby PW. The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev 1993; 7:7A 1277 - 89; http://dx.doi.org/10.1101/gad.7.7a.1277; PMID: 8391506
  • Cheng TC, Wallace MC, Merlie JP, Olson EN. Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 1993; 261:215 - 8; http://dx.doi.org/10.1126/science.8392225; PMID: 8392225
  • Goldhamer DJ, Brunk BP, Faerman A, King A, Shani M, Emerson CP Jr.. Embryonic activation of the myoD gene is regulated by a highly conserved distal control element. Development 1995; 121:637 - 49; PMID: 7720572
  • Donoghue M, Ernst H, Wentworth B, Nadal-Ginard B, Rosenthal N. A muscle-specific enhancer is located at the 3′ end of the myosin light-chain 1/3 gene locus. Genes Dev 1988; 2:12B 1779 - 90; http://dx.doi.org/10.1101/gad.2.12b.1779; PMID: 3240859
  • Rosenthal N, Berglund EB, Wentworth BM, Donoghue M, Winter B, Bober E, et al. A highly conserved enhancer downstream of the human MLC1/3 locus is a target for multiple myogenic determination factors. Nucleic Acids Res 1990; 18:6239 - 46; http://dx.doi.org/10.1093/nar/18.21.6239; PMID: 2243772
  • Wentworth BM, Donoghue M, Engert JC, Berglund EB, Rosenthal N. Paired MyoD-binding sites regulate myosin light chain gene expression. Proc Natl Acad Sci U S A 1991; 88:1242 - 6; http://dx.doi.org/10.1073/pnas.88.4.1242; PMID: 1847512
  • Johnson JE, Wold BJ, Hauschka SD. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol 1989; 9:3393 - 9; PMID: 2796990
  • Horlick RA, Benfield PA. The upstream muscle-specific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol Cell Biol 1989; 9:2396 - 413; PMID: 2761536
  • Carvajal JJ, Keith A, Rigby PW. Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5. Genes Dev 2008; 22:265 - 76; http://dx.doi.org/10.1101/gad.442408; PMID: 18198342
  • Chang TH, Primig M, Hadchouel J, Tajbakhsh S, Rocancourt D, Fernandez A, et al. An enhancer directs differential expression of the linked Mrf4 and Myf5 myogenic regulatory genes in the mouse. Dev Biol 2004; 269:595 - 608; http://dx.doi.org/10.1016/j.ydbio.2004.02.013; PMID: 15110722
  • Wakabayashi-Takai E, Noguchi S, Ozawa E. Identification of myogenesis-dependent transcriptional enhancers in promoter region of mouse gamma-sarcoglycan gene. Eur J Biochem 2001; 268:948 - 57; http://dx.doi.org/10.1046/j.1432-1327.2001.01954.x; PMID: 11179961
  • Tournay O, Benezra R. Transcription of the dominant-negative helix-loop-helix protein Id1 is regulated by a protein complex containing the immediate-early response gene Egr-1. Mol Cell Biol 1996; 16:2418 - 30; PMID: 8628310
  • Barthel KK, Liu X. A transcriptional enhancer from the coding region of ADAMTS5. PLoS One 2008; 3:e2184; http://dx.doi.org/10.1371/journal.pone.0002184; PMID: 18478108
  • Blum R, Vethantham V, Bowman C, Rudnicki M, Dynlacht BD. Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev 2012; 26:2763 - 79; http://dx.doi.org/10.1101/gad.200113.112; PMID: 23249738
  • Ponting CP. The functional repertoires of metazoan genomes. Nat Rev Genet 2008; 9:689 - 98; http://dx.doi.org/10.1038/nrg2413; PMID: 18663365
  • Prabhakar S, Poulin F, Shoukry M, Afzal V, Rubin EM, Couronne O, et al. Close sequence comparisons are sufficient to identify human cis-regulatory elements. Genome Res 2006; 16:855 - 63; http://dx.doi.org/10.1101/gr.4717506; PMID: 16769978
  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28:511 - 5; http://dx.doi.org/10.1038/nbt.1621; PMID: 20436464
  • Ostrovsky O, Bengal E, Aronheim A. Induction of terminal differentiation by the c-Jun dimerization protein JDP2 in C2 myoblasts and rhabdomyosarcoma cells. J Biol Chem 2002; 277:40043 - 54; http://dx.doi.org/10.1074/jbc.M205494200; PMID: 12171923
  • Knoepfler PS, Bergstrom DA, Uetsuki T, Dac-Korytko I, Sun YH, Wright WE, et al. A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with pbx-Meis1/Prep1. Nucleic Acids Res 1999; 27:3752 - 61; http://dx.doi.org/10.1093/nar/27.18.3752; PMID: 10471746
  • Bengal E, Ransone L, Scharfmann R, Dwarki VJ, Tapscott SJ, Weintraub H, et al. Functional antagonism between c-Jun and MyoD proteins: a direct physical association. Cell 1992; 68:507 - 19; http://dx.doi.org/10.1016/0092-8674(92)90187-H; PMID: 1310896
  • Wang X, Blagden C, Fan J, Nowak SJ, Taniuchi I, Littman DR, et al. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev 2005; 19:1715 - 22; http://dx.doi.org/10.1101/gad.1318305; PMID: 16024660
  • Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH, et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1997; 1:35 - 45; http://dx.doi.org/10.1016/S1097-2765(00)80005-2; PMID: 9659901
  • Rampalli S, Li L, Mak E, Ge K, Brand M, Tapscott SJ, et al. p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nat Struct Mol Biol 2007; 14:1150 - 6; http://dx.doi.org/10.1038/nsmb1316; PMID: 18026121
  • Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 2004; 36:738 - 43; http://dx.doi.org/10.1038/ng1378; PMID: 15208625
  • Cao Y, Kumar RM, Penn BH, Berkes CA, Kooperberg C, Boyer LA, et al. Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J 2006; 25:502 - 11; http://dx.doi.org/10.1038/sj.emboj.7600958; PMID: 16437161
  • Yuan W, Condorelli G, Caruso M, Felsani A, Giordano A. Human p300 protein is a coactivator for the transcription factor MyoD. J Biol Chem 1996; 271:9009 - 13; http://dx.doi.org/10.1074/jbc.271.15.9009; PMID: 8621548
  • Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y, et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell 1999; 4:725 - 34; http://dx.doi.org/10.1016/S1097-2765(00)80383-4; PMID: 10619020
  • Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, et al. The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J Cell Biol 2011; 194:551 - 65; http://dx.doi.org/10.1083/jcb.201010090; PMID: 21859860
  • Ludolph DC, Konieczny SF. Transcription factor families: muscling in on the myogenic program. FASEB J 1995; 9:1595 - 604; PMID: 8529839
  • Wang JC, Waltner-Law M, Yamada K, Osawa H, Stifani S, Granner DK. Transducin-like enhancer of split proteins, the human homologs of Drosophila groucho, interact with hepatic nuclear factor 3beta. J Biol Chem 2000; 275:18418 - 23; http://dx.doi.org/10.1074/jbc.M910211199; PMID: 10748198
  • Sekiya T, Zaret KS. Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol Cell 2007; 28:291 - 303; http://dx.doi.org/10.1016/j.molcel.2007.10.002; PMID: 17964267
  • Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004; 84:209 - 38; http://dx.doi.org/10.1152/physrev.00019.2003; PMID: 14715915
  • Lluís F, Ballestar E, Suelves M, Esteller M, Muñoz-Cánoves P. E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J 2005; 24:974 - 84; http://dx.doi.org/10.1038/sj.emboj.7600528; PMID: 15719023
  • Ornatsky OI, Cox DM, Tangirala P, Andreucci JJ, Quinn ZA, Wrana JL, et al. Post-translational control of the MEF2A transcriptional regulatory protein. Nucleic Acids Res 1999; 27:2646 - 54; http://dx.doi.org/10.1093/nar/27.13.2646; PMID: 10373581
  • Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999; 19:21 - 30; PMID: 9858528
  • Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J, et al. Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 2000; 14:574 - 84; PMID: 10716945
  • Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998; 14:167 - 96; http://dx.doi.org/10.1146/annurev.cellbio.14.1.167; PMID: 9891782
  • Gillespie MA, Le Grand F, Scimè A, Kuang S, von Maltzahn J, Seale V, et al. p38-gamma-dependent gene silencing restricts entry into the myogenic differentiation program. J Cell Biol 2009; 187:991 - 1005; http://dx.doi.org/10.1083/jcb.200907037; PMID: 20026657
  • Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol 2000; 20:3951 - 64; http://dx.doi.org/10.1128/MCB.20.11.3951-3964.2000; PMID: 10805738
  • Lawlor MA, Rotwein P. Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Mol Cell Biol 2000; 20:8983 - 95; http://dx.doi.org/10.1128/MCB.20.23.8983-8995.2000; PMID: 11073997
  • Musarò A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 2001; 27:195 - 200; http://dx.doi.org/10.1038/84839; PMID: 11175789
  • Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 2002; 157:137 - 48; http://dx.doi.org/10.1083/jcb.200108071; PMID: 11927606
  • Serra C, Palacios D, Mozzetta C, Forcales SV, Morantte I, Ripani M, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell 2007; 28:200 - 13; http://dx.doi.org/10.1016/j.molcel.2007.08.021; PMID: 17964260